Методика гидравлического расчета газопровода
Содержание:
- Оптимальные диаметр трубопровода и средняя скорость
- Гидравлический расчет внутридомовой газовой системы
- Вычисления сечения по СНИП 2.04.01-85
- Гидравлический расчет системы отопления – пример расчета
- Как работает система газовой магистрали
- Определение расхода теплоносителя и диаметров труб
- Расчет разветвленного трубопровода.
- Итоги
Оптимальные диаметр трубопровода и средняя скорость
С увеличением диаметра возрастают капитальные затраты (точнее – амортизационные). Кривая К. С увеличением диаметра при заданном расходе снижается средняя скорость потока, а с ней и энергия, затрачиваемая на преодоление гидравлического сопротивления. Эксплутационным (прежде всего энергетическим) затратам отвечает кривая Э. Оптимальным является диаметр трубопровода, при котором суммарные затраты (кривая ) минимальны. |
Диаметр трубопровода, мм | Рекомендуемая предельная скорость, м/с | Рекомендуемый предельный расход, л/с |
50 | 0,96 | 1,88 |
100 | 1,15 | 9,03 |
200 | 1,34 | 42,1 |
500 | 1,45 | 284 |
1000 | 1,68 | 1280 |
Гидравлический расчет внутридомовой газовой системы
В данном случае, так же, как и при расчете газопровода с высоким уровнем давления газа, во внимание берется сосредоточенный объем газа. Согласно потребляемой величине природного газа осуществляется расчет диаметра участка внутридомовой магистрали
Согласно потребляемой величине природного газа осуществляется расчет диаметра участка внутридомовой магистрали.
Также принимаются в учет потери давления, которые могут иметь место во время доставки голубого топлива. В расчетной системе должны быть минимальные возможные потери давления
Во внутридомовых системах газа уменьшение давления является довольно частым явлением, поэтому вычисление данного показателя очень важно для того, чтобы работа всей газовой магистрали была максимально эффективной
В высотных зданиях, помимо перепадов и изменений давления, производятся вычисления гидростатического напора. Гидростатический напор имеет место вследствие того, что газ и воздух обладают различными плотностями, вследствие чего происходит образование данного вида напора в газовых системах с низким уровнем давления газа.
Вычисляются величины газовых труб. Оптимально подобранный диаметр труб в состоянии обеспечить минимальный уровень потерь давления от станции перераспределения и до точки доставки природного газа потребителю. При этом в программе расчета необходимо учесть то, что перепад давления не должен превышать четырехсот паскалей. Также такой перепад давления закладывается в точки преобразования и область распределения.
При расчете расхода природного газа следует принимать к сведению тот факт, что потребление газа происходит неравномерно
.
Завершающий этап расчета заключается в сумме всех перепадов давления, в которой учитывается общий коэффициент потерь на непосредственно самой магистрали, а также ее ветках. Суммарный показатель не будет превышать предельно допустимых значений, а будет составлять менее чем семьдесят процентов от номинального давления, показываемого приборами.
Если статья оказалась полезной
, в качестве благодарности воспользуйтесь одной из кнопок
ниже — это немного повысит рейнинг статьи. Ведь в интернете так трудно найти что-то стоящее.
Вычисления сечения по СНИП 2.04.01-85
Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.
Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.
Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:
Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.
Формула для вычисления
Смотреть видео
Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:
В формуле: q показывает расход воды. Он исчисляется литрами. d – размер сечению трубы, он показывается в сантиметрах. А V в формуле – это обозначение скорости передвижения потока, она показывается в метрах на секунду.
Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.
Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.
В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.
По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное влияние на пропускные возможности сети водоснабжения.
Определение потери напора
Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления
. Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.
Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.
А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях будет разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.
Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения. Причем, все это при вычисления скорости потока должны проводиться после тщательной подготовки и измерений.
Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам. Тогда можно рассчитывать на то, что смонтированная сеть водопровода или отопления будет работать с максимальной эффективностью.
Смотреть видео
Гидравлический расчет системы отопления – пример расчета
В качестве примера рассмотрим двухтрубную гравитационную систему отопления.
Исходные данные для расчета:
- расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
- параметры системы – tг = 750С, tо = 600С;
- расход теплоносителя (расчетный) – Vсо = 7,6 м3/ч;
- присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
- автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 800С;
- автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
- система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).
Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.
На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.
На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:
0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.
Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.
Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.
Как работает система газовой магистрали
- В черте города размещается сеть газовых трубопроводов. В конце каждого трубопровода, по которому будет осуществляться подача газа, устанавливаются специальные газораспределительные системы, которые еще называют газораспределительными станциями.
- После того, как газ доставлен на такую станцию, осуществляется перераспределение давления, а точнее — снижается напор газа.
- Далее газ направляется в регуляторный пункт, а от него — в сеть с более высоким уровнем давления.
- Трубопровод с наибольшим уровнем давления присоединяют к подземному хранилищу газа.
- Для того, чтобы регулировать суточное потребление природного газа, осуществляется монтаж специальных газгольдерных станций.
- Газовые трубы, в которых протекает газ со средним и высоким давлением, служат своеобразной подпиткой для газопроводов с низким газовым напором. Для осуществления контроля этого процесса существуют точки регулировки.
- Для того, чтобы определиться с тем, какими будут потери давления, а также точное поступление в конечный пункт всего необходимого объема природного газа, осуществляют вычисление оптимального диаметра труб. Данные вычисления производятся путем гидравлического расчета.
Если установка газовых труб уже произведена, то с помощью вычислений имеется возможность узнать потери давления в период передвижения природного газа по трубам. Также сразу указываются размеры имеющихся труб. Потери давления происходят вследствие сопротивления.
Существует местное сопротивление, которое возникает при изменении диаметра труб, в точках перемены скорости газа, на поворотах. Также часто имеет место сопротивление при трении, которое происходит независимо от того, присутствуют ли повороты, а также какая скорость потока газа. Место его распределения — вся протяженность газовой магистрали.
Газовая магистраль позволяет проводить газ, как в коммунальные потребительские сферы, так и так и в промышленные организации и предприятия.
При помощи расчетов определяют точки, в которые нужно подвести газ низкого давления. Чаще всего к подобным точкам относятся отдельные маленькие котельные, небольшие коммунальные потребители, здания общего посещения и коммерческие помещения, жилые здания.
Определение расхода теплоносителя и диаметров труб
Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:
G = 860q/ ∆t, где:
- G – расход теплоносителя, кг/ч;
- q – тепловая мощность радиатора на участке, кВт;
- Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.
Для первого участка расчет теплоносителя выглядит так:
860 х 2 / 20 = 86 кг/ч.
Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:
GV = G /3600ρ, где:
- GV – объемный расход воды, л/сек;
- ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.
В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:
Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):
Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:
860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:
65 / 3600 х 0,983 = 0.018 л/сек.
Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:
Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:
Расчет разветвленного трубопровода.
- Как правило задается не кинематическая вязкость, а вид жидкости и рабочая температура. Кинематическую вязкость берут по таблицам в справочниках.
- При истечении в атмосферу не потерь на вход в бак, однако в точных расчетах необходимо учитывать скоростной напор выходящей из трубы жидкости. Если им пренебречь и не учитывать местные потери, то весь располагаемый напор равен сумме потерь напора по длине в общем трубопроводе и в разветвленной части (в двух трубопроводах разветвления напор одинаков, однако длины и/или диаметры различны, а значит различны средние скорости и расходы).
последняя не берется из таблицГрафоаналитический способ решения задачи.
—a—b—cbсbb—d—b—e— 1 Напомним использованные сведения из математики. Квадрат суммы . Квадрат разности . Постоянные выносятся за знак интеграла. Интеграл суммы (разности) есть сумма (разность) интегралов. Табличные интегралы
Итоги
Чтобы сделать гидравлический расчет системы отопления используют программу, онлайн-калькулятор или таблицу Excel. На примере мы показали, что для человека без профильного образования сделать правильные вычисления невозможно. Поэтому лучший вариант – это заказать его у специалиста. Если дом маленьких, то расчет не нужен.
Целью гидравлического
расчета является определение диаметров
теплопроводов при заданной тепловой
нагрузке и расчетном циркуляционном
давлении, установленном для данной
системы.
Метод расчета
теплопроводов по удельным потерям
давления заключается в раздельном
определении потерь давления на трение
и в местных сопротивлениях.
В курсовом проекте
необходимо осуществить гидравлический
расчет главного циркуляционного кольца.
До гидравлического
расчета теплопроводов выполняют
аксонометрическую схему системы
отопления со все запорно-регулирующей
арматурой. На схеме, разбитой на расчетные
участки, нумеруют стояки а сами участки,
а так же указывают тепловую нагрузку и
длину участка. Длина берется по планам
и разрезам здания. Сумма длин всех
расчетных участков составляет величину
расчетного циркуляционного кольца.
Расчет теплопроводов по методу средних
удельных потерь производят по следующей
последовательности:
Значение
р
зависит от конструктивных особенностей
системы отопления
является расчетным
располагаемым давлением, создаваемым
за элеватором.
R ср =65%∑L,
∑L
– суммарная длина расчетных участков,
м.
Определяют
расход теплоносителя на расчетных
участках G уч,кг/ч, принимая что Q 1
– тепловая нагрузка участка, составленная
из тепловых нагрузок отопительных
приборов, Вт;
Ориентируясь
на R ср
и
G уч, подбирают фактический диаметр участка
d,
фактическую величину удельной потери
давления на трение R,
скорость движения воды W.
Определяют
потери давления на трение на каждом
участке RL,Па.
Находят
потери давления в местных сопротивлениях
Z=p d ∑ζ
на участке, зная скорость воды W
и сумму коэффициентов местных
сопротивлений ∑ζ. Значение динамического
давления p d
определяются
по приложению.
Местное
сопротивление тройников и крестовин
относят к расчетным участкам с меньшим
расходом воды; местное сопротивление
отопительных приборов учитывается
поровну в каждом примыкающем к ним
трубопроводе.
Определяют
общие потери давления на каждом участке
при выбранных диаметрах, Па:
Уч =R·
l уч +Z,
Сумма
потерь давления расчетном кольце, Па:
К =∑(R·
l i +Z i),
К =(0,9-0,95) р,
Если условие не
выполняется, следует изменить диаметры
трубопроводов на участках, на которых
фактические удельные потери давления
на трение намного завышены относительно
средних R ср.
Изменив диаметры, делается пересчет
участков до выполнения условия.
Таблица
№4. Гидравлический расчет системы
отопления.
Номер |
R×l уч, |
||||||||||
Сумма потерь
давления в расчетном кольце равна
К =∑(R·
l i +Z i)=11843,01
Па.
Значение
к
должно быть
в пределах(0,9-0,95) р,т.е.,
Сегодняшняя тема – система водяного отопления и основополагающие принципы ее расчета. Тема фундаментальная. Ознакомившись с материалом, вы получите ключ к пониманию как выполнять расчет водяного отопления любого объекта! Прочитайте очень внимательно…
Всю статью! Я попытался разложить весь материал на элементарные для простоты восприятия «ступени». Делая шаг за шагом по «ступеням» этой своеобразной «лестницы познания», вы сможете легко достичь «вершины»!
Информация, изложенная в этой статье, не является «открытием Америки». Если вам доступно рассказали об этом когда-то преподаватели, или вы прочитали по этой тематике хорошую книгу – и все поняли, то вам, несомненно, повезло. Так случилось, что мне пришлось доходить до понимания этих, в общем-то, элементарных моментов теплотехники через значительное количество книг с иногда противоречивой и запутанной информацией. В большей степени знания пришли через практические опыты на проектируемых и действующих системах отопления завода металлоконструкций, мебельной фабрики, встроенного магазина, двух больших торговых комплексов и десятка более мелких объектов.