Принцип работы и устройство солнечных батарей
Содержание:
Полупроводниковый фотоэлемент
Относительная спектральная чувствительность вакуумных фотоэлементов с катодами из различных материалов ( V — катод, чувствительный к красному свету.| Схема фотоэлектронного умножителя ( ФЭУ.. — фотокатод. 2-сетчатые диноды. 3 — анод. |
Полупроводниковые фотоэлементы также имеют запорный слой, однако для работы они не требуют внешнего источника тока. Образующиеся в запорном слое при освещении электроны и дырки перемещаются в / г-проводник и / — проводник соответственно; таким образом, возникает фототок, который можно измерить амперметром.
Полупроводниковый фотоэлемент может представлять собой монокристалл, например CdS, в который вмонтирован проводник в виде тонкой проволоки ( фиг.
Полупроводниковые фотоэлементы характеризуются не строгой линейностью зависимости величины электрического сигнала от освещения. Этот недостаток, равно как и непостоянство чувствительности фотоэлемента, нестабильность его питания, а также дрейф усиления измерительной схемы, устраняется применением двухлучевой системы, в которой измеряется не абсолютное значение интенсивности света, прошедшего через поглощающее вещество, а ее отношение к интенсивности света просвечивающего источника.
Вольт-амперные характеристики фотодиода для фотодиодного режима.| Энергетические характеристики фотодиода — 6. Принцип устройства планарного фотодиода. |
Полупроводниковые фотоэлементы, иначе называемые вентильными или фотогальваническими, служат для преобразования энергии излучения в электрическую энергию. По существу они представляют собой фотодиоды, работающие без источника внешнего напряжения и создающие собственную ЭДС под действием излучения.
Полупроводниковые фотоэлементы характеризуются не строгой линейностью зависимости величины электрического сигнала от освещения. Этот недостаток, равно как и непостоянство чувствительности фотоэлемента, нестабильность его питания, а также дрейф усиления измерительной схемы, устраняется применением двухлучевой системы, в которой измеряется не абсолютное значение интенсивности света, прошедшего через поглощающее вещество, а ее отношение к интенсивности света просвечивающего источника.
Полупроводниковые фотоэлементы с внутренним фотоэффектом, или фотосопротивления, обладают значительно большей чувствительностью, чем описанные выше фотоэлементы, в которых используется внешний фотоэффект. Например, чувствительность фотосо-противления из сульфида кадмия может достигать 1 а / лм.
Полупроводниковые фотоэлементы ооладают рядом преимуществ по сравнении с другими дотаэлектрическами приборами. Некоторые лз них имеют большую чувствительность в инфракрасной части спектра, что позволяет работать с низкотемпературными источниками излучениями. Все фотосопротивления имеют большую интегральную чувствительность и относительно малые размеры.
Полупроводниковые фотоэлементы обладают рядом преимуществ по сравнению с другими фотоэлектрическими приборами.
Спектральные характеристики фотоэлементов.| Частотная характеристика фотоэлементов. |
Полупроводниковые фотоэлементы могут использоваться в качестве источников электрической энергии, а также в качестве фотоприемников.
Кремниевые и другие полупроводниковые фотоэлементы применяются в солнечных и ядерных преобразователях и в электроизмерительных приборах. Фотогальванические приемники обладают значительной инерционностью вследствие большой собственной емкости, образованной активным полупроводниковым слоем и электродами.
Недостатком полупроводниковых фотоэлементов является их заметная инерционность: изменение фототока запаздывает относительно изменения освещенности фотоэлемента.
Недостатком полупроводниковых фотоэлементов является их заметная инерционность: изменение фототока запаздывает относительно изменения освещенности фотоэлемента. Поэтому полупроводниковые фото — ммимшмшш элементы не пригодны для регистрации быстропеременных световых потоков.
Фотоэлементы промышленного назначения
На солнечных электростанциях (СЭС) можно использовать разные типы ФЭП, однако не все они удовлетворяют комплексу требований к этим системам:
- высокая надёжность при длительном (до 25—30 лет) ресурсе работы;
- высокая доступность сырья и возможность организации массового производства;
- приемлемые с точки зрения сроков окупаемости затрат на создание системы преобразования;
- минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос), включая ориентацию и стабилизацию станции в целом;
- удобство техобслуживания.
Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. д.[источник не указан 3691 день]
Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью[источник не указан 3691 день]. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.
Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний, Cu(In,Ga)Se2 и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.[источник не указан 3691 день]
Кроме того, фотоэлементы используются в защитных устройствах, в системах управления производственными процессами, химических анализаторах, системах контроля за сгоранием топлива, за температурой, для контроля качества продукции массового производства, для светотехнических измерений, в указателях уровня, в счётных устройствах, для синхронизации, для автоматического открывания дверей, в реле времени, в записывающих устройствах.
Виды фотоэффекта
Внешним фотоэффектом называют явление испускания электронов под воздействием электромагнитного излучения. При этом электроны, выходящие из вещества, называются фотоэлектронами, соответственно, электрический ток в нем называется фототоком. Непосредственно элемент в аппарате, подвергающийся облучению и отдающий электроны, называется фотокатодом. Спектральная характеристика фотокатода — это зависимость чувствительности к воздействию от частоты и длины волны излучения.
Внутренним фотоэффектом называют перераспределение внутри вещества согласно энергетическим особенностям. Применение фотоэффекта внутреннего объяснило явление фотопроводимости, то есть изменения концентрации заряда в веществе под воздействием излучения, при этом выход электронов не происходит.
Фотовольтаический эффект возникает под воздействием конкретно электромагнитного излучения на вещество со свободными электронами.
Ядерный фотоэффект возникает при поглощении ядром атома гамма-излучения при неизменном нуклонном количестве. При этом происходит распад ядра и выход ядерной энергии.
Принцип действия
Принцип действия спектрофотометра основан на нулевом методе и заключается в следующем.
Монохроматический пучок света делится призмой Рошона на два плоскополяризованных пучка.
Один пучок диафрагмируется, другой проходит через призму Волластона и снова делится на два пучка, поляризованных во взаимно перпендикулярных плоскостях. Так как на призму Волластона падает плоскополяризованный пучок света, интенсивность пучков света за призмой Волластона определяется угловым положением относительно нее призмы Рошона.
Далее пучки поочередно перекрываются вращающимся модулятором таким образом, что интенсивность света в каждом пучке изменяется по трапецеидальной форме, и началу открытия одного пучка соответствует начало закрытия другого. Конструкция модулятора и скорость его вращения выбраны таким образом, что световой поток прерывается с частотой 50 Гц.
Свет, прошедший через контрольный и измеряемый образцы, попадает в интегрирующий шар и после многократного отражения от его стенок освещает фотоэлемент.
Освещенность фотоэлемента в каждый момент времени определяется суммой световых потоков, прошедших через контрольный и измеряемый образцы.
Если световые потоки равны, освещенность фотоэлемента будет постоянна в любой момент времени, и переменный сигнал на входе усилительной системы будет отсутствовать.
При наличии поглощения в измеряемом образце суммарный световой поток на фотоэлементе будет изменяться с частотой 50 Гц и на нагрузке фотоэлемента появится переменное напряжение сигнала той же частоты. Это напряжение усиливается усилителем и подается на обмотку управления электродвигателя отработки, который с помощью фотометрического кулачка поворачивает призму Рошона до тех пор, пока не исчезнет разность световых потоков, вызывающая электрический сигнал на входе усилителя.
Одновременно с поворотом призмы происходит перемещение пера, фиксирующего на бланке пропускание или оптическую плотность образца.
Изменение длины волны света, выходящего из монохроматора, производится путем перемещения вдоль спектра средней щели спектрофотометра электродвигателем развертки спектра; одновременно с этим поворачивается барабан записывающего устройства. Таким образом, на бланке, закрепленном на барабане, записывается кривая зависимости коэффициента пропускания или оптической плотности образца от длины волны.
При работе на фиксированной длине волны происходит поворот барабана записывающего устройства без перемещения средней щели спектрофотометра, при этом на бланке записывается кривая изменения коэффициента пропускания или оптической плотности образца во времени.
3.1.3.2. Оптическая схема
Оптическая схема спектрофотометра состоит из двух частей: спектральной (двойного монохроматора) и фотометрической.
Нить лампы 1 (рис. 1) изображается конденсором 2 через входную щель 3 в плоскости объектива 4.
Входная щель расположена в фокальной плоскости объектива; выходящий из него параллельный пучок света проходит диспергирующую призму 5 и разлагается в спектр. Объектив 6 первого монохроматора дает спектральное изображение входной щели в плоскости средней щели. Средняя щель двойного монохроматора, образованная зеркалом 7 для поворота лучей и ножом 8, вырезает участок спектра, который проходит во второй монохроматор и после вторичного разложения проецируется в плоскость выходной щели 9.
По выходе из монохроматора пучок света попадает в фотометрическую часть спектрофотометра. Сначала пучок проходит через линзу 10 и двоякопреломляющую призму Рошона 11. Линза 10 дает изображение объектива выходного коллиматора вблизи диафрагмы 12, призма 11 разделяет это изображение на два, поляризованных во взаимно перпендикулярных плоскостях. Одно изображение, расположенное на оптической оси системы, проходит через призму Волластона 13 и линзу 14, другое, смещенное, — срезается диафрагмой 12.
Линза 14 дает изображение выходной щели в плоскости полулинз 15, установленных внутри модулятора света 16. Вследствие двойного лучепреломления призмы Волластона в плоскости полулинз получаются два изображения выходной щели. Пройдя полулинзы 15, контрольный и измеряемый образцы, пучки отклоняются на 90° призмами 17, затем через входные окна 18 шара 19 падают на окна 20, к которым прижимаются две белые заглушки.
Свет суммируется шаром и освещает фотоэлемент, расположенный за выходным окном шара, закрытым молочным стеклом.
Устройство солнечной батареи
Для того, чтобы солнечная батарея была способна преобразовывать свет солнца в ток, необходимы следующие элементы:
- Фотоэлектрический слой, который играет роль полупроводника. Представлен двумя слоями разных по проводимости материалов. Здесь электроны способны переходить из области p(+) в область n (-). Это называется p-n переход;
- Между двумя слоями полупроводников помещен элемент, который является по своей сути преградой для перехода электронов;
- Источник питания. Он необходим для подключения к элементу, препятствующему переходу электронов. Он преобразовывает движение заряженных электронов, т.е. создает электрический ток. Аккумуляторная батарея. Аккумулирует и хранит энергию;
- Контролёр заряда. Основной его функцией является подключение и отключение солнечной батареи исходя от уровня заряда. Более сложные устройства способны контролировать максимальный уровень мощности;
- Преобразователь прямого тока в переменный (инвертор);
- Устройство, стабилизирующее напряжение. Обеспечивает защиту системы солнечной батареи от скачков напряжения.
Полупроводниковые фотоэлектрические преобразователи энергии
Фотоэлемент на основе мультикристаллического кремния
Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнуты КПД 43,5 %, 44,4 %, 44,7 %.
Отсутствие выпрямительных диодов и эффективных антенн на частоты электромагнитного излучения, соответствующие свету, пока не позволяет создавать фотоэлектрические преобразователи, использующие свойства кванта как электромагнитной волны, наводящей переменную ЭДС в дипольной антенне, хотя, теоретически, это возможно. От таких устройств можно было бы ожидать не только лучшего КПД, но и меньших температурной зависимости и деградации со временем.
Физический принцип работы фотоэлемента
Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.
Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.
Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.
Основные необратимые потери энергии в ФЭП связаны с:
- отражением солнечного излучения от поверхности преобразователя,
- прохождением части излучения через ФЭП без поглощения в нём,
- рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,
- рекомбинацией образовавшихся фото-пар, на поверхностях и в объёме ФЭП,
- внутренним сопротивлением преобразователя,
- и некоторыми другими физическими процессами.
Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:
- использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;
- направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;
- переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;
- оптимизация конструктивных параметров ФЭП (глубины залегания p-n перехода, толщины базового слоя, частоты контактной сетки и др.);
- применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;
- разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;
- создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;
Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно-переизлучающих структур, линз Френеля, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т. д.