Коэффициент теплового расширения
Содержание:
- Подробности
- Отрицательный коэффициент теплового расширения
- Температурный коэффициент линейного расширения твердых веществ
- Объёмный коэффициент нефти
- Температурный коэффициент линейного расширения металлов и сплавов
- Тепловое расширение — вода
- Коэффициент линейного теплового расширения
- Приготовление расширяющихся смесей
- Что такое компенсаторы для труб из полипропилена
- Объёмный коэффициент газа
Подробности
Виды армирования при помощи алюминия:
1.наносят слой при помощи алюминиевого листа сверху трубы.
2.алюминиевый лист наносят внутри трубы.
3.проводят армирование при помощи перфорированного алюминия.
Все методы представляют собой склеивание трубопроката из полипропилена и алюминиевой фольги. Данный способ малоэффективен, так как труба может расслаиваться, изменяя качество изделий в худшую сторону.
Процесс армирования при помощи стекловолокна является более функциональным и прочным. Данный метод предполагает, что внутри и снаружи трубы остается полипропилен, а между ними укладывают стекловолокно. Армирующая труба имеет три слоя. Такие трубы не подвержены тепловому изменению.
Сравнение показателя расширения до и после армирующей процедуры:
1.простые трубы имеют коэффициент в 0.1500 мм / мК, по-другому десять миллиметров на метр погонный, при изменении температуры на семьдесят градусов.
2.армированные трубопрокаты при помощи алюминия меняют значение до 0.03 мм/ мК, по-другому равно трем миллиметрам на погонный метр.
3.во время армирования стекловолокном показатель снижается до 0.035 мм / мК.
Полипропиленовые трубопрокаты с армированным слоем из стекловолокна применят в различных сферах.
Особенности армирования труб из полипропилена. Армирующим материалом является цельная либо перфорированная фольга, которая имеет толщину 0.01 до 0.005 сантиметров. Материал прокладывают на стенке снаружи либо внутри изделия. Слои соединяют при помощи клея.
Фольга ложится сплошной прослойкой, которая становится защитой от кислорода. Большой объем кислорода образует коррозию на отопительных приборах.
Армирующий слой из стекловолокна образует три слоя, средний из них является стекловолокном. Его сваривают с полипропиленовыми соседними прослойками.
Так образуется максимально прочное изделие, наделенное малым показателем линейного расширения.
Внимание! Стекловолокно, как армирующий материал, имеет больше преимуществ, он монолитен и не расслаивается, в отличие от алюминиевого армирования. Все изделия из полипропилена: армированные и неармированные, отличаются гибкостью, так как имеют большой показатель упругости
Все изделия из полипропилена: армированные и неармированные, отличаются гибкостью, так как имеют большой показатель упругости.
Свойство делает сборку трубопроводов простым процессом, снижает затраты на время монтажа, потому что перед укладкой не требуется зачистка армирующего слоя из алюминия.
Отрицательный коэффициент теплового расширения
Основная статья: Negative thermal expansion
Некоторые материалы при повышении температуры демонстрируют не расширение, а наоборот, сжатие, т. е. имеют отрицательный коэффициент теплового расширения. Для некоторых веществ это проявляется на довольно узком температурном интервале, как, например, у воды на интервале температур 0…+3,984 °С, для других веществ и материалов, например фторид скандия(III), вольфрамат циркония (ZrW2O8), некоторых углепластиков интервал весьма широк. Подобное поведение демонстрирует также обычная резина. При сверхнизких температурах аналогичным образом ведут себя кварц, кремний и ряд других материалов. Также существуют инварные сплавы (ферро-никелевые), имеющие в некотором диапазоне температур коэффициент теплового расширения, близкий к нулю.
Температурный коэффициент линейного расширения твердых веществ
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).
Вещество | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алмаз | 1,2 |
Бетон (при t = 20 °С) | 41913 |
Гранит (при t = 20 °С) | 8 |
Графит | 7,9 |
Древесина (при t = = 20 °С): | |
— вдоль волокон | 5,5-5,5 |
— поперек волокон | 34-60 |
Кварц плавленый (при * = 40 °С) | 0,4 |
Кирпич (при t = 20 °С) | 41885 |
Лед (в интервале температур от —20 до 0 °С) | 51 |
Парафин (от 16 до 48 °С) | 70* |
Дуб (от 2 до 34 °С): | |
— вдоль волокон | 4,9 |
— поперек волокон | 54,4 |
Сосна (от 2 до 34 °С): | |
— вдоль волокон | 5,4 |
— поперек волокон | 34 |
Стекло лабораторное | 41885 |
Стекло оконное (от 20 до 200 °С) | 10 |
Фарфор | 2,5-4,0 |
Шифер (при t = 20 °С) | 10 |
* коэффициент объемного расширения парафина. |
Объёмный коэффициент нефти
Объёмный коэффициент нефти — безразмерная величина, характеризующая изменение объёма нефти в поверхностных условиях по сравнению с пластовыми.
Когда нефть попадает на поверхность, происходит следующее:
1. Потеря массы — газ переходит из растворенного состояния в свободное,
2. Снижение температуры — от пластовой температуры до 20 °C,
3. Расширения — давление падает от пластового до атмосферного.
Объёмный коэффициент зависит от давления, температуры, состава нефти, однако наибольшее влияние оказывает газосодержание. Применяется при подсчёте запасов углеводородов объёмным методом и методом материальных запасов, а также при интерпретации гидродинамических исследований. Так, например, объёмный коэффициент 1.25 означает, что 1 м³ нефти на поверхности занимает 1.25 м³ в пластовых условиях, то есть:B=VkV{\displaystyle B={\frac {V_{k}}{V_{0}}}}
где B{\displaystyle B} — объёмный коэффициент расширения,Vk{\displaystyle V_{k}} — объём нефти в пластовых условиях (в коллекторе),V{\displaystyle V_{0}} — объём сепарированной нефти в поверхностных условиях.
Температурный коэффициент линейного расширения металлов и сплавов
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).
Металл, сплав | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алюминий | 2,4 |
Бронза | 13-21 |
Вольфрам (в интервале температур от 0 до 200 °С) | 4,5 |
Дуралюмин (при t = 20 °С) | 23 |
Золото | 14 |
Железо | 12 |
Инвар* | 1,5 |
Иридий | 6,5 |
Константан | 42339 |
Латунь | 17-19 |
Манганин | 18 |
Медь | 17 |
Нейзильбер | 18 |
Никель | 14 |
Нихром (от 20 до 100 °С) | 14 |
Олово | 26 |
Платина | 9,1 |
Платинит** (при t = 20 °С) | 41920 |
Платина-иридий*** (от 20 до 100 °С) | 8,8 |
Свинец | 29 |
Серебро | 20 |
Сталь углеродистая | 43009 |
Цинк | 32 |
Чугун (от 20 до 100 °С). | 41952 |
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов. ** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.
*** Из этого сплава изготовлены прототипы килограмма и метра. |
Тепловое расширение — вода
Тепловое расширение воды характеризуется коэффициентом теплового расширения.
Коэффициент теплового расширения воды характеризует изменение единицы объема воды при увеличении ее температуры на 1 С. Он в основном зависит от температуры и минерализации. С увеличением температуры коэффициент тепло -, вого расширения изменяется неравномерно. Объем воды при увеличении температуры от 0 до 4 С уменьшается.
Особенность теплового расширения воды имеет важное значение для сохранения живых организмов в реках и водоемах зимой. Охлаждаемые воздухом верхние слои воды опускаются вниз, а теплые поднимаются вверх
Такое перемешивание происходит до тех пор, пока температура воды не достигнет 4 С. При дальнейшем охлаждении верхние слои уже не опускаются вниз и при 0 С сверху образуется лед. Лед плавает на поверхности воды и предохраняет водоем от полного промерзания.
Коэффициент теплового расширения воды характеризует изменение единицы объема воды при увеличении ее температуры ка 1 С. Он в основном зависит от температуры и минерализации. С увеличением температуры коэффициент теплового расширения изменяется неравномерно. Объем воды при увеличении температуры от 0 до 4 С уменьшается.
Коэффициент теплового расширения воды характеризует изменение единицы объема воды при увеличении ее температуры на 1 С. Он в основном зависит от температуры и минерализации. С увеличением температуры коэффициент теплового расширения изменяется неравномерно. Объем воды при увеличении температуры от 0 до 4 С уменьшается.
Чем объясняется особенность теплового расширения воды.
Как известно, аномалия теплового расширения воды обусловлена ее рыхлой структурой, образованной действием водородной связи.
Как известно, аномалия теплового расширения воды обусловлена ее рыхлой структурой, образованной действием водородной связи. Поэтому исчезновение этой аномалии у воды, заполняющей поры и капилляры с поперечниками порядка сотен ангстрем , свидетельствует о более плотной структуре, в меньшей степени контролируемой водородными связями.
Как известно, аномалия теплового расширения воды обусловлена ее рыхлой структурой, образованной действием водородной связи.
Как видно из таблицы, тепловое расширение воды во много раз превышает тепловое расширение минералов и пород
Привлекает внимание и то, что коэффициент щ гипса, содержащего большое количество кристаллизационной воды, примерно в 7 раз выше коэффициента щ кальцита, в 3 раза выше среднего значения at известняков и в 2 5 раза выше среднего значения щ песчаников.
. Отдельно обсудим вопрос об особенностях теплового расширения воды.
Отдельно обсудим вопрос об особенностях теплового расширения воды.
Как показывают экспериментальные исследования, коэффициент теплового расширения воды в пластовых условиях колеблется в пределах 18 10 — 5 — 90 10 — 5 1 / град.
Ответ, а) Из-за особенности теплового расширения воды в водоемах зимой отсутствует конвекция: наиболее плотные слои, имеющие температуру около 4 С, располагаются внизу; б) вода имеет плохую теплопроводность; в) лед и снег, покрывающие водоем, плохо проводят тепло; г) поверхность льда отражает тепловые лучи, идущие от дна водоема.
Из формулы следует, что коэффициент теплового расширения воды ( Е) характеризует изменение единицы объема воды при изменении ее температуры на 1 С. По экспериментальным данным в пластовых условиях он колеблется в пределах ( 18 — 90) — 10 — 5 1 / С. С увеличением температуры коэффициент теплового расширения возрастает, с ростом пластового давления — уменьшается.
Коэффициент линейного теплового расширения
α L = 1 L ( ∂ L ∂ T ) p ≈ Δ L L Δ T {\displaystyle \alpha _{L}={\frac {1}{L}}\left({\frac {\partial L}{\partial T}}\right)_{p}\approx {\Delta L \over {L\Delta T}}} , К −1 (°C−1) — относительное изменение линейных размеров тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении. В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений. Например, у анизотропных кристаллов, древесины коэффициенты линейного расширения по трём взаимно перпендикулярным осям: α x ; α y ; α z {\displaystyle \alpha _{x};\alpha _{y};\alpha _{z}} . Для изотропных тел α x = α y = α z {\displaystyle \alpha _{x}=\alpha _{y}=\alpha _{z}} и α V = 3 α L {\displaystyle \alpha _{V}=3\alpha _{L}} .
Например, вода, в зависимости от температуры, имеет различный коэффициент объёмного расширения:
- 0,53·10−4 К-1 (при температуре 5—10 °C);
- 1,50·10−4 К-1 (при температуре 10—20 °C);
- 3,02·10−4 К-1 (при температуре 20—40 °C);
- 4,58·10−4 К-1 (при температуре 40—60 °C);
- 5,87·10−4 К-1 (при температуре 60—80 °C).
Для железа коэффициент линейного расширения равен 11,3×10−6 K−1.
Для сталей
Таблица значений коэффициента линейного расширения α, 10−6K−1
Марка стали | 20—100 °C | 20—200 °C | 20—300 °C | 20—400 °C | 20—500 °C | 20—600 °C | 20—700 °C | 20—800 °C | 20—900 °C | 20—1000 °C |
08кп | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
08 | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
10кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 14,8 | 12,6 |
10 | 11,6 | 12,6 | — | 13,0 | — | 14,6 | — | — | — | — |
15кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
15 | 12,4 | 13,2 | 13,9 | 14,4 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
20кп | 12,3 | 13,1 | 13,8 | 14,3 | 14,8 | 15,1 | 20 | — | — | — |
20 | 11,1 | 12,1 | 12,7 | 13,4 | 13,9 | 14,5 | 14,8 | — | — | — |
25 | 12,2 | 13,0 | 13,7 | 14,4 | 14,7 | 15,0 | 15,2 | 12,7 | 12,4 | 13,4 |
30 | 12,1 | 12,9 | 13,6 | 14,2 | 14,7 | 15,0 | 15,2 | — | — | — |
35 | 11,1 | 11,9 | 13,0 | 13,4 | 14,0 | 14,4 | 15,0 | — | — | — |
40 | 12,4 | 12,6 | 14,5 | 13,3 | 13,9 | 14,6 | 15,3 | — | — | — |
45 | 11,9 | 12,7 | 13,4 | 13,7 | 14,3 | 14,9 | 15,2 | — | — | — |
50 | 11,2 | 12,0 | 12,9 | 13,3 | 13,7 | 13,9 | 14,5 | 13,4 | — | — |
55 | 11,0 | 11,8 | 12,6 | 13,4 | 14,0 | 14,5 | 14,8 | 12,5 | 13,5 | 14,4 |
60 | 11,1 | 11,9 | — | 13,5 | 14,6 | — | — | — | — | — |
15К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,0 | — | — | — | — |
20К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,2 | — | — | — | — |
22 | 12,6 | 12,9 | 13,3 | 13,9 | — | — | — | — | — | — |
А12 | 11,9 | 12,5 | — | 13,6 | 14,2 | — | — | — | — | — |
16ГС | 11,1 | 12,1 | 12,9 | 13,5 | 13,9 | 14,1 | — | — | — | — |
20Х | 11,3 | 11,6 | 12,5 | 13,2 | 13,7 | — | — | — | — | — |
30Х | 12,4 | 13,0 | 13,4 | 13,8 | 14,2 | 14,6 | 14,8 | 12,0 | 12,8 | 13,8 |
35Х | 11,3 | 12,0 | 12,9 | 13,7 | 14,2 | 14,6 | — | — | — | — |
38ХА | 11,0 | 12,0 | 12,2 | 12,9 | 13,5 | — | — | — | — | — |
40Х | 11,8 | 12,2 | 13,2 | 13,7 | 14,1 | 14,6 | 14,8 | 12,0 | — | — |
45Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
50Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
Приготовление расширяющихся смесей
Готовим смеси своими руками
Расширяющие и напрягающие бетоны при необходимости можно приготовить своими руками, в условиях строительной площадки.
Существует два основных способа для изготовления быстротвердеющих водонепроницаемых смесей:
- с применением напрягающих и расширяющихся цементов;
- с использованием специальных расширяющихся добавок на основе портландцемента.
Расход модифицированных цементов и пропорции по отношению к заполнителям, такие же, как и для приготовления обычного тяжелого бетона. Инструкция для приготовления расширяющихся смесей с использованием портландцемента для каждой добавки индивидуальна. Пропорции и порядок действий описаны на тыльной стороне упаковки продукта.
Модифицирующие расширяющие добавки
При производстве быстротвердеющих расширяющих бетонов используют алюминатносульфатные и алюмооксидные добавки, обладающие как расширяющим, так и напрягающим действием.
Наиболее распространенные это:
- Расширяющая химическая добавка (РД) — тонкоизмельченная сухая смесь алюминатных и сульфатных компонентов, позволяющая получать изделия с высокой водонепроницаемостью, морозостойкостью и компенсированной усадкой.
Расширяющиеся добавки (РД)
- Добавка РСАМ — сухой порошок светло-коричневого цвета. Служит для получения безусадочного и напрягающего вяжущего на основе портландцемента. При равнозначном объеме цемента, введение добавки в состав смеси существенно повышает прочность на растяжение—сжатие, и полностью удаляет проблему возникновения трещин.
Присадка РСАМ
- Expancrete — это сухая неорганическая добавка, компенсирующая усадку. Эффект действия зависит от объема используемой присадки, водоцементного соотношения, фракции и состава заполнителя, а также частоты армирования конструкций. Поэтому, необходимое количество добавки определяют опытным путем.
Что такое компенсаторы для труб из полипропилена
Деформация труб от расширения во время перепада температур приводит к их провисанию из-за удлинения. В системах длиной десять метров и более используют компенсаторы гибкого типа.
Компенсатор представляет деталь для соединения элементов в виде гибкой завернутой петли.
Элемент конструкции защищает трубы во время расширения при перепадах температуры либо давления в системе.
Внимание! Деталь имеет небольшую цену, легкий монтаж, но намного увеличивает прочность и износостойкость всей сети. Разновидности компенсирующих устройств:
Разновидности компенсирующих устройств:
1.осевое устройство служит фиксированной опорой, их легко собирать.
сдвиговое устройство перемещается в две стороны, выполнены с помощью нержавеющей стали, между собой скрепляются посредством арматурного соединения.
3.поворотное устройство применяют в местах поворотов, закрепляя углы. Их используют, где направление изменяется под прямым углом.
4.универсальное устройство имеет три типа работы: угловой, осевой, поперечный тип движения. Используют в небольших сетях, или, когда нет возможности установить сильфонные устройства.
5.фланцевое устройство представляют собой сильфонное устройство, выполненное из резины, при помощи него нивелируют действие ударной силы во время повышения давления. Данное устройство подходит для выравнивания осевой неточности сети.
Компенсаторы монтируют при помощи сварки либо фланцев.
Применение компенсаторов имеет свои достоинства:
1.исключают вихревые потоки, стабилизируют давление в середине трубопрокатов.
2.образуют герметичность системы.
3.увеличивают срок службы.
Объёмный коэффициент газа
Аналогично используется объёмный коэффициент пластового газа, который существенно зависит от пластовых условий (давления и температуры):
- B=PPk⋅TkT⋅Zk,{\displaystyle B={\frac {P_{0}}{P_{k}}}\cdot {\frac {T_{k}}{T_{0}}}\cdot Z_{k},}
где B{\displaystyle B} — объёмный коэффициент пластового газа,
Pk{\displaystyle P_{k}} и Tk{\displaystyle T_{k}} — пластовые давление и температура в коллекторе по абсолютной шкале,
то есть давление с учётом барометрического (на 1,033 кгс/см² больше манометрического),
а температура в кельвинах,
P=1,033{\displaystyle P_{0}=1,033} ата и T=293{\displaystyle T_{0}=293} K (+20 °C) — атмосферное давление и температура в нормальных (поверхностных) условиях,
Zk{\displaystyle Z_{k}} — коэффициент сверхсжимаемости газа в пластовых условиях (в коллекторе), зависящий от состава пластового газа, его критических давления и температуры, пластовых давления и температуры.
Поскольку газ в пласте находится под большим давлением в сжатом состоянии, то объёмный коэффициент газа значительно меньше единицы (на промыслах порядка 0,01).