Теплопроводность кирпича

Содержание:

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1

Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу

Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины

Таблица проводимости тепла воздушных прослоек

Виды клинкерного кирпича

Строительный материал этого типа классифицируется по целевому назначению. Потребителю предлагаются следующие виды клинкерного кирпича:

СТРОИТЕЛЬНЫЙ

Рядовые или одинарные изделия используются для возведения опорных строительных конструкций, испытывающих высокие нагрузки. К ним относятся такие силовые элементы, как колонны, ступени лестниц, столбы, фундаменты и цоколи. Названные строительные конструкции отличаются механической прочностью, устойчивостью к внешним воздействиям и долговечностью.

ОБЛИЦОВОЧНЫЙ

Облицовочный или фасадный клинкерный кирпич характеризуется превосходными декоративными свойствами и богатым выбором расцветок. Поверхности изделия дополнительно глазируются, что позволяет добиться максимальной устойчивости к атмосферным явлениям и солнечному свету. Облицовочные материалы помимо обычных изделий прямоугольной формы могут быть и фасонными.

ТРОТУАРНЫЙ

Тротуарный клинкерный кирпич используется для мощения мостовых, пешеходных и садовых дорожек, а также парковых аллей. Материал обладает значительной стойкостью к истиранию и ударным механическим воздействиям. Это делает элементы ландшафтного дизайна исключительно долговечными и способными сохранять свой внешний вид.

Уровень показателя силикатных изделий

Теплопроводность основных видов кирпичей, и другие характеристики кирпича.

Сфера применения силиката зависит от его качественных характеристик. Сюда входят теплопроводность, водопоглощение и морозостойкость кирпича. Силикат обладает повышенной склонностью к водопоглощению, поэтому он не используется при кладке фундаментов, подвалов или цоколей, так как эти сооружения имеют высокий уровень влажности.

Сухой силикатный материал обладает теплопроводностью (Т), составляющей 0,8 Вт/м*К. Керамические изделия имеют более высокую величину данного параметра, поэтому Т кладки сооружений из них составляет 0,9 Вт/м*К, что на 0,2 Вт/м*К больше, чем в первом случае. Показатель, составляющий 0,35-0,70 Вт/(м°С), а также средняя плотность сухого силикатного кирпича находятся в линейной зависимости, поэтому данная величина не зависит от количества и расположения пустот.

Силикатные изделия имеют значение теплового показателя переноса энергии меньше, чем керамические, поэтому они применяются для отделки фасадов. Для получения теплоэффективных стен применяется многопустотный силикатный кирпич, а также камень. Их плотность не более 1450 кг/м³. Эффект достигается только при аккуратном ведении кирпичной кладки, предполагающей использование нежирного кладочного раствора, который наносится тонким слоем и имеет плотность не более 1800 кг/м³. Раствор не должен заполнять пустоты в изделии.

Сравнение теплопроводности клееного бруса и других стройматериалов

Теплопроводность – важное свойство стройматериала, отражающее его способность принимать тепло от более нагретых объектов или передавать его менее теплым телам. Чем ниже коэффициент теплопроводности, тем лучше материал сохраняет тепло

В нижеприведенной таблице можно наглядно оценить, насколько клееный брус превосходит другие стройматериалы по способности противостоять тепловым потерям.

Материал Коэффициент теплопроводности, Вт/м*С
Клееный брус 0,1
Сухая древесина 0,09–0,18
Сосна, ель поперек/вдоль волокон 0,09/0,18
Дуб поперек/вдоль волокон 0,1/0,23
Профилированный брус 0,18
Пенобетон 0,08–0,47
Кирпич керамический пустотелый 0,35–0,52
Кирпич красный глиняный 0,56
Керамзитобетон 0,66–0,73
Кирпич силикатный 0,7–1,1
Бетон 1,51
Железобетон 1,69–2,04
Мрамор 2,91
Гранит 3,49

Прекрасные эксплуатационные характеристики клееных брусьев обеспечиваются благодаря особой технологии их изготовления – тщательно высушенные доски из хвойных пород древесины составляются в пакеты и склеиваются между собой с применением специального экологически безопасного клея и прессования. Такая слоистая конструкция обладает многочисленными достоинствами, одним из которых является высокая энергоэффективность. Она достигается благодаря низкой теплопроводности древесины и клея, которые используются при создании клееного бруса.

Поскольку плотность этого материала сравнительно низкая (порядка 500 кг/м3), показатели его теплопроводности также невысоки, что позволяет строить из клееного бруса уютные и комфортные дома. При этом стены домов можно делать более тонкими, чем при использовании других материалов. Например, стены из клееного бруса толщиной 150 мм обеспечивают примерно такую же защиту от тепловых потерь, как и стены из оцилиндрованного бревна диаметром 240 мм.

Виды, свойства и применение

По назначению кирпич подразделяется на строительный, специальный и облицовочный. Строительный применяется для кладки стен, облицовочный – для дизайна фасадов и интерьера, а специальный идет на фундаменты, дорожное покрытие, кладку печей и каминов.

Более узкая специализация обусловлена различной структурой изделий.

Полнотелый кирпич

Представляет собой сплошной брусок со случайными пустотами, составляющими менее 13 %.

Полнотелыми бывают кирпичи:

Силикатный, керамический – используются для возведения самонесущих стен, перегородок, колонн, столбов и так далее. Конструкции из полнотелого кирпича надежны, морозоустойчивы, способны нести дополнительные нагрузки. Перегородки обеспечивают хорошую звукоизоляцию при небольшой толщине, сохраняют большое количество тепла.

К тому же материал довольно декоративен и популярен у многих современных дизайнеров. Но высокий коэффициент теплопроводности и водопоглощения вынуждает сооружать наружные стены большой толщины или делать их трехслойными, сочетая с изоляционными материалами и другими видами кирпича.

Шамотный – изготавливается из специальной огнеупорной измельченной глины и порошка шамота путем обжига с повышенным температурным режимом. Применяется для выкладки каминов, печей и других сооружений, где требуется огнеупорность. Специфика применения определила большое разнообразие форм изделия:

  • клиновидные и прямые;
  • больших средних и малых размеров;
  • фасонные с профилями различной сложности;
  • специальные, лабораторные и промышленные тигли, трубки и другой инвентарь.

Клинкерный – изготавливается из тугоплавких глин с разнообразными добавками. Обжигается при очень высоких температурах до полного запекания. Различные компоненты и вариативность режима обжига придают кирпичам повышенную прочность, водостойкость и широкую палитру оттенков от зеленоватого, при обжиге с торфом, до бордового с угольными подпалами. Раньше широко применялся для мощения тротуаров, теперь используется в кладке и облицовке фундаментов. Теплопроводность керамического кирпича довольно высока.

Пустотелый кирпич

Материал допускает 45 % пустот от общего объема, а также отличается по форме, структуре и расположению пустот в бруске. Теплопроводность пустотелого кирпича напрямую зависит от количества воздуха в его теле – чем больше воздуха, тем лучше теплоизоляция.

Кирпич с пустотами – брусок с двумя-тремя большими сквозными отверстиями, которые служат скорее облегчению и удешевлению, нежели улучшению теплоизоляции. Применяется наравне с полнотелым аналогом, за исключением фундаментов и других конструкций, требующих повышенной прочности.

Щелевой кирпич – все тело блока пронизано отверстиями различной формы размеров.

  • прямоугольными;
  • треугольными;
  • ромбовидными;
  • сквозными и закрытыми с одной стороны;
  • вертикальными и горизонтальными.

Довольно хорошая прочность и низкая теплопроводность определяют его востребованность для возведения наружных стен жилых зданий.

Поризованный кирпич – выпускается нескольких размеров. Кроме большого числа отверстий обладает пористой структурой материала, которая образуется при выгорании специальных мелких фракций, добавленных в глину. Обладает лучшим набором качеств для строительства наружных стен. Прочность, низкая теплопроводность и большие габариты сокращают сроки строительства в разы, при этом с соблюдением последних требований СНиП. Теплая керамика характеризуется самыми низкими показателями теплопроводности, но из-за хрупкости пока имеет ограниченное применение.

Облицовочный кирпич – тоже является пустотелым, удачно сочетая художественные и утеплительные свойства.

Таблица показателей теплопроводности строительных материалов

Наименование материала Коэффициент теплопроводности, Вт/(м*К)
Блок керамический 0,17- 0,21
Поризованный кирпич 0,22
Керамический щелевой кирпич 0,34–0,43
Силикатный щелевой кирпич 0,4
Керамический кирпич с пустотами 0,57
Керамический полнотелый кирпич 0,5-0,8
Силикатный кирпич с пустотами 0,66
Силикатный кирпич полнотелый 0,7–0,8
Клинкерный кирпич 0,8–0,9

Почти всегда в строительстве дома для разных конструктивных элементов используются несколько видов кирпича с соответствующими характеристиками.

Красный кирпич, размеры и разновидности и дефекты

Размеры обыкновенного красного кирпича нормируются требованиями ГОСТ 530-2007, изделия выпускаются в следующих типоразмерах:

  • Нормальный формат, он же одинарный, размеры обыкновенного красного кирпича 250×120х65 мм;
  • Полуторный, утолщённый, в этом случае увеличена толщина, остальные габаритные размеры остаются прежними – 250×120х88 мм;
  • Двойной, крупноформатный, габаритные размеры – 250×120х138 мм;
  • Модульный, нормального формата, габаритные размеры 288×138х65;
  • «Евро» — стандарт, пришедший из Европы, имеет несколько видов, наиболее известен размер 250×85х65 мм, этот стандарт также прописан в ГОСТ.

Необходимо отметить, что ГОСТ допускает исполнение кирпича с отклонениями от стандарта. Поэтому габариты красного кирпича могут незначительно отличаться от контрольных размеров.

«Эффективный», он же пустотелый кирпич, хорошо видна структура керамики

Отдельно необходимо отметить изделия клиновидной формы, предназначенные для сборки сводов и арок, эта разновидность изделий термостойкая, и имеет зауженную форму по граням.

Печной клиновидный кирпич

Размеры стандартного красного кирпича

Габариты этого стройматериала полностью регламентируются ГОСТ, от условий эксплуатации и его назначения может изменяться высота красного кирпича, в пределах и размерах, предусмотренных системой государственных стандартов.

Габариты пустотного и размеры полнотелого красного кирпича аналогичны, в этом отношении разнится лишь сфера их эксплуатации.

Щелевой или пустотный, активно используется для заполнения проёмов в монолитных и каркасных конструкциях, сборки стен, создания перегородок, в то время как полнотелый эксплуатируется в условиях высоких нагрузок: фундамент дома, цокольные этажи, несущие стены.

Размеры красного облицовочного кирпича

Облицовочный или лицевой кирпич используется для наружного выкладывания, декоративной отделки стен сооружений. Оформление и размер облицовочного кирпича выбирается исходя из проекта.

Размер одинарного облицовочного кирпича полностью аналогичен стандартному размеру – 250×120х65 или «Евро» 250×85х65 мм.

Размеры и обозначения

Размеры печного красного кирпича

Печной кирпич, от рядового, отличен способностью длительно переносить воздействие открытого пламени и высокой температуры, область его эксплуатации – создание устройств, работающих с высокими температурными нагрузками, обкладка таких сооружений и оборудования, работающих под воздействием открытого пламени. Различают тугоплавкий красный и шамотный кирпич.

Цена красного печного кирпича обычно выше чем у рядового. Это результат того, что для изготовления этих изделий используются другое сырье и технологии.

Габаритный размер печного кирпича в отличие от других видов можно условно разделить на два вида:

  • Прямоугольные изделия с размерами одинарного и утолщенного кирпича 250×120х65 мм и 250×120х88 мм;
  • Клиновидные изделия по ГОСТ 8426-75, изделия особой формы: различают радиально-продольные и радиально-поперечные.

Красный кирпич для фундамента, размеры и особенности

Для кладки фундамента кирпич должен обладать повышенными параметрами по влагоустойчивости и пониженным водопоглощением, так как фундамент наиболее подвержен воздействию влаги. Габаритный размер рядового красного кирпича выбирается исходя из технических требований проекта дома. Кроме этого, изделия, используемые для устройства фундамента, должны иметь высокие несущие характеристики, ввиду того что на фундамент приходится большая часть несущей нагрузки строения.

При выборе материала для цокольных этажей необходимо обратить внимание на выбор материала по физическим параметрам: морозоустойчивости, влагопроницаемости и других. Прочность также крайне важна, изделие в кладке будет нести на себя всю тяжесть строения. Для фундамента, необходимо подбирать качественный, хорошо обожжённый, без дефектов, возникших от нарушения технологии его производства и хранения, материал

Для фундамента, необходимо подбирать качественный, хорошо обожжённый, без дефектов, возникших от нарушения технологии его производства и хранения, материал.

Для устройства фундамента рекомендовано применять рядовой полнотелый кирпич. Размеры – 250×120х65 мм одинарного и 250×120х88 утолщенного. Двойной размер красного кирпича для цоколя применяется редко.

Сложить печь? Легко!

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки

Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

//www.youtube.com/watch?v=NjQhpwCjYQI

Морозостойкость

Морозостойкость определяется путем циклов заморозки и размораживания. Данный параметр важен при выборе вида кирпича для укладывания несущих стен. Марка зависит от количества циклов и указывается на изделиях. Наиболее высокой морозостойкостью обладает облицовочный и красный кирпич, который хорошо выдерживает температуру до -50 градусов Цельсия и ниже. Если у вас используется силикатный кирпич, его свойства хуже, поэтому кладку придется делать в два слоя. Не подойдет силикат и для строительства фундамента.

В условиях зимней непогоды тепло в доме сохраняется за счет обогревательного котла отопительной системы. Но для того чтобы не происходило рассеивания тепла, нужны стены, пол и потолок из соответствующего материала, хорошо сохраняющего заданную температуру. Тип кирпичной кладки играет в ходе строительства немаловажную роль. Выбирать материал следует, учитывая все параметры и погодные условия.

В следующем видео вас ждет обзор теплопроводности кирпича ШБ 8.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Показатель Бетоны, растворно-бетонные смеси
Железобетон Цементно-песчаный раствор Сложный раствор (цементно-известково-песчаный) Известково-песчаный раствор
плотность, кг/куб.м 2500 1800 1700 1600
коэффициент теплопроводности, Вт/(м•°С) 2,04 0,93 0,87 0,81
толщина стен, м 6,53 2,98 2,78 2,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Показатель Конструкционно-теплоизоляционные м-лы
Пемзобетон Керамзитобетон Полистиролбетон Пено- и газобетон (пено- и газосиликат) Кирпич глиняный Силикатный кирпич
плотность, кг/куб.м 800 800 600 400 1800 1800
коэффициент теплопроводности, Вт/(м•°С) 0,68 0,326 0,2 0,11 0,81 0,87
толщина стен, м 2,176 1,04 0,64 0,35 2,59 2,78

Таблица 3.2

Показатель Конструкционно-теплоизоляционные м-лы
Кирпич шлаковый Силикатный кирпич 11-типустотный Кирпич силикатный 14-типустотный Сосна (поперечное расположение волокон) Сосна (продольное расположение волокон) Фанера клеёная
плотность, кг/куб.м 1500 1500 1400 500 500 600
коэффициент теплопроводности, Вт/(м•°С) 0,7 0,81 0,76 0,18 0,35 0,18
толщина стен, м 2,24 2,59 2,43 0,58 1,12 0,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Показатель Теплоизоляционные м-лы
ППТ ПТ полистиролбетонные Маты минераловатные Плиты теплоизоляционные (ПТ) из минеральной ваты ДВП (ДСП) Пакля Листы гипсовые (сухая штукатурка)
плотность, кг/куб.м 35 300 1000 190 200 150 1050
коэффициент теплопро- водности, Вт/(м•°С) 0,39 0,1 0,29 0,045 0,07 0,192 1,088
толщина стен, м 0,12 0,32 0,928 0,14 0,224 0,224 1,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector