Мини гэс своими руками. промышленные аналоги
Содержание:
Мини-гидроэлектростанция своими руками
Построить водяную станцию для получения электроэнергии можно самостоятельно. Для частного дома достаточно двадцати киловатт в сутки. С таким значением справится даже мини-ГЭС, собранная своими руками. Но при этом следует помнить, что данный процесс характеризуется рядом особенностей:
- Точные расчеты провести достаточно трудно.
- Размеры, толщина элементов выбирается «на глаз», только опытным путем.
- Самодельные сооружения не имеют защитных элементов, что приводит к частым поломкам и связанным с этим затратам.
Поэтому если нет опыта и определенных знаний в данной сфере, лучше отказаться от идеи подобного рода. Дешевле может оказаться приобретение уже готовой станции.
Если все же решаетесь делать все своими руками, то начинать необходимо с измерения скорости потока воды в реке. Ведь от этого зависит мощность, которую можно получить. Если скорость будет меньше одного метра в секунду, то строительство мини-гидроэлектростанции в данном месте не оправдает себя.
Еще один этап, который нельзя опускать – это расчеты. Необходимо тщательно рассчитать размер затрат, которые уйдут на строительство станции. В результате может оказаться, что гидроэлектростанция – не лучший вариант
Тогда стоит обратить внимание на другие виды альтернативной электроэнергии
Мини-гидроэлектростанция может стать оптимальным решением в вопросе экономии затрат на электроэнергию. Для ее строительства необходимо наличие реки недалеко от дома. В зависимости от желаемых характеристик можно подобрать подходящий вариант ГЭС. При правильном подходе выполнить подобное сооружение можно даже своими руками.
Принцип действия
Принцип действия микро — ГЭС аналогичен действию больших и малых гидроэлектростанций. Разница заключается лишь в мощности установленного оборудования и количества вырабатываемой электрической энергии. Производство электрического тока осуществляет генератор, вращательное движение ротора которому, передается с гидравлической турбины. Для того, чтобы турбина пришла во вращательное движение, создается напор воды, на водоеме, где установлена мини ГЭС. Это может быть напор, создаваемый естественным течением водных масс, либо создаваемый путем строительства плотины или иного технического сооружения. В определенных случаях, могут быть использованы оба способа создания напора одновременно. Под действием напора, потоки воды устремляются в требуемом направлении, в створе их движения монтируется турбина, на лопасти которой и поступает энергия движущихся водных масс. Эта кинетическая энергия воды, преобразуется турбиной, во вращательное движение, которое посредством механической передачи (редуктор) и передается на вал генератора.
Источником энергии могут служить:
- реки различных размеров и интенсивности течения и ручьи,
- перепады высот на водосбросах водоемов различного назначения;
- технологические водотоки;
- перепады высот на трубопроводах различного назначения.
В зависимости от вида используемого оборудования и способа его установки, принцип работы гидроэлектростанции, может различаться. Это могут быть следующие варианты:
- Принцип «водяного колеса» – при этом варианте, приемное колесо частично погружается в воду параллельное ее поверхности. Водные потоки, перемещаясь по естественному руслу, давят на лопасти, размещенные на колесе, и приводят его во вращение. Колесо, в свою очередь, посредством редуктора и прочих механических устройств, создает вращательное движение генератора.
- Конструкция в виде гирлянды – с противоположных берегов монтируется трос, на котором установлены специальные роторы. Вода, перемещаясь вращает роторы, вращательное движение которых передается на трос. Трос вращаясь, передает вращательное движение на генератор, установленный на берегу.
- С использованием ротора Дарье – в принцип работы турбины, заложено использование разности давлений на лопастях ротора.
- С использованием принципа пропеллера – лопасти устройства помещены в воду и под воздействие воды приходят во вращательное движение, которое и передается на вал генератора, вырабатывающего электрический ток.
Преимущества использования микро — ГЭС:
- Отсутствует необходимость в изменении естественного ландшафта местности;
- На качество воду не оказывается стороннее воздействие, она сохраняет свои свойства;
- Не зависимость от воздействия природных явлений;
- Возможность использования в круглогодичном цикле работы;
- Нет необходимости в строительстве дорогостоящих гидротехнических сооружений.
Обобщая информацию
Полтора киловатта дают несколько мощных устройств. При переходе в режим автономного энергообеспечения, владелец коттеджа должен изменить и некоторые бытовые правила жизни и обустройства жилья, например, использовать устройства большой мощности днём, когда фотоэлементы вырабатывают максимум электроэнергии, обеспечить достойную теплоизоляцию жилища и т.п.
Расчётная цифра в 1,5 кВт, это очень большая величина. В реальной жизни, ночью хватает 500-700 Вт, в т.ч. светодиодное освещение, холодильник, ноутбук, телевизор. Поэтому на практике, одному домовладению может хватить и 1 кВт мощности.
ВЫВОД: у гидроаккумуляторов гораздо больше прав считаться автономной системой, чем у блока АКБ.
Альтернативная энергия – это энергия отличная от той, которую человечество привыкло использовать в повседневной жизни для обеспечения своих потребностей в тепле и электричестве. Источниками альтернативной энергии служат солнечные лучи, ветер, морские волны и сама наша планета.
На сайте Alter220.ru представлены все популярные источники энергии.
Вероятно, Вам также понравятся следующие материалы:
Автономное электроснабжение;
Аккумуляторы для солнечных батарей;
Концепция энергонезависимости в частном домостроении;
Спасибо, что дочитали до конца! Если статья Вам понравилась!
Делитесь с друзьями, оставляйте ваши комментарии
Добавляйтесь в нашу группу в ВК:
ALTER220 Портал о альтернативную энергию
и предлагайте темы для обсуждений, вместе будет интереснее!!!
Как устроен мини-генератор
Blue Freedom состоит из нескольких основных элементов. Сердцем устройства является микротурбина диаметром 12 см, генератор мощностью 5 Вт и аккумулятор емкостью 5000 мАч. Все это упаковано в небольшой пластиковый корпус диаметром 20 см и 5,5 см толщиной. Весит мини-ГЭС всего 400 г. Она с легкостью помещается в небольшую сумку или рюкзак.
Работать с установкой проще простого – достаточно погрузить турбину в воду (желательно в реку с небольшим течением), а основной блок, к которому подключаются устройства, нуждающиеся в зарядке, оставить «на берегу». Процесс зарядки наступает, едва вода начинает вращать турбину, при этом направление течения не играет никакой роли. Blue Freedom работает в диапазоне температур от 5 до 40°C. Постепенно встроенный аккумулятор мини-ГЭС набирает заряд и готов отдавать энергию другим устройствам: мобильным телефонам, планшетам, портативным светильникам, фотоаппаратам и т.д.
В ходе испытаний портативные генераторы продемонстрировали КПД 90%, в то время как солнечные батареи работают с КПД 15-20%. К тому же солнечные аккумуляторы совершенно бесполезны в темное время суток и во время затяжных дождей. Так что оказаться «вдали от цивилизации» ночью или в дождь и не иметь возможности запустить любимую «электронику» да и банально остаться без связи – согласитесь, для туристов перспектива совсем не радужная.
Конструкция гидроэнергоблока Ленева:
Мини-ГЭС – гидроэнергоблок Ленева представляет собой систему (два ряда) лопастей прямоугольной формы (плоская пластинка) оси которых делят их на две (1/2) не равные части, большая из которых всегда (за счёт действия потока) находится за осью дальше по потоку. Тем самым достигается минимальное её вращение вокруг своей оси и, следовательно, наименьшие турбулентные завихрения.
Оси лопастей, своей верхней и нижней частями, в свою очередь, закреплены на верхней и нижней, замкнутых в кольца – цепях ПРЛ (либо на любом другом гибком элементе). Цепи передают усилие через звёздочки (рабочие колёса) на два вертикальных вала, с которых механическая энергия движущейся среды (воды, воздуха и т.д. и т.п.) через гибкую муфту и промежуточный вал передаётся на валы электрогенераторов. Валы установки через подшипники скольжения (качения) жёстко закреплены на каркасе гидроэнергоблока, имеющим закрытые на 2/3 боковые и глухую нижнюю стенки, что не препятствует поступлению дополнительной воды из окружающего потока через верх и 1/3 боковых стенок гидроэнергоблока.
В одном каркасе рационально размещать минимум три блока установки мини-ГЭС.
Положение лопастей по отношению к основному потоку регулируется неподвижными направляющими для цепи и подвижными для большей из сторон лопасти, а, меняя расстояние между подвижной направляющей для лопасти и неподвижной для цепи, мы задаем необходимый угол поворота между лопастью и направлением основного потока от 0 до 45, добиваясь тем самым оптимального режима работы гидроэнергоблока либо останавливая её полностью. Таким образом, поток воздействует на лопасть фактически перпендикулярно, под 90. Один из валов гидроэнергоблока имеет натяжное устройство, регулирующее натяжение цепей. Лопасти должны иметь свободу вращения на своих осях, а оси так же свободно вращаться в креплениях к цепям. Между лопастью и местом крепления к цепи на осях должны устанавливаться ролики, которые и будут катиться по неподвижным направляющим, удерживая тем самым цепь постоянно в перпендикулярном положении относительно направления основного потока.
Размеры блоков мини-ГЭС не ограничены. Определяются требуемой мощностью и размерами реки. Как пример, возьмём: ширина – 1200 мм, глубина – 700 мм, длина – 1250 мм, т.е. объём – 1 м3. Он позволяет разместить в нём 3 установки с 17 лопастями в каждой, имеющих, в свою очередь: ширину – 150 мм и глубину – 500 мм, т.е. каждая площадью – 0,075 м2. Так как две лопасти всегда будут находиться на поворотах, тогда общая рабочая площадь одной установки гидроэнергоблока – 1,125 м2, сумма 3-х установок мини-ГЭС в одном каркасе (1 м3 потока) будет – 3,375 м2!!!
Частота вращения валов – всего 30-60 оборотов в минуту.
Именно такая конструкция гидроэнергоблока позволяет наиболее полно использовать каждый кубический метр потока движущейся среды, возникающие центробежное и центростремительное ускорения, значительно увеличивающие как скорость движения потока, так и действие силы тяжести разделённого на секции потока движущейся среды, в нашем случае – реки.
Материалоёмкость одного киловатта мини-ГЭС в зависимости от используемых материалов на изготовление будет варьироваться от нескольких сот грамм (пластмасса, сверхвысокомолекулярный полиэтилен) до 2-3 кг (сталь) на 1 кВт установленной мощности.
Как работает мини ГЭС
Принципиальную схему работы ГЭС можно выбрать из нескольких вариантов:
- Гирляндная ГЭС. С одного берега реки на другой под водой проложен трос с нанизанными на него роторами. Течение вращает роторы и, соответственно, сам трос. Один конец троса в подшипнике, другой соединен с генератором.
- Пропеллер. Подводная конструкция, напоминающая ветряк с узкими лопастями и вертикальным ротором. Лопасть шириной всего 20 мм при большой скорости вращения обеспечит минимальное сопротивление. Лопасть такой ширины выбирается при скорости потока 0,8–2, 0 м в сек.
- Водяное колесо. Колесо с лопастями, частично погруженное в поток, и расположенное под прямым углом к поверхности воды. Поток воды давит на лопасти, вращая колесо.
- Ротор Дарье. Вертикальный ротор со сложными поверхностями лопастей. Жидкость, обтекая лопасти, создает разное давление, за счет чего происходит вращение.
На фото мини ГЭС на основе водяного колеса
Составные части Мини ГЭС
- Гидротурбина с лопатками, соединённая валом с генератором
- Генератор. Предназначен для выработки переменного тока. Присоединяется к валу турбины. Параметры генерируемого тока быть относительно нестабильны, однако ничего похожего на скачки мощности при ветряной генерации не происходит;
- Блок управления гидротурбиной обеспечивает пуск и останов гидроагрегата, автоматическую синхронизацию генератора при подключении к энергосистеме, контроль режимов работы гидроагрегата, аварийную остановку.
- Блок балластной нагрузки, предназначенный для рассеивания неиспользуемой потребителем на данный момент мощность, позволяет избежать выхода из строя электрогенератора и системы контроля и управления.
- Контроллер заряда/ стабилизатор: предназначен для управления зарядом аккумуляторных батарей, контроля поворота лопастей и преобразования напряжения.
- Банк АКБ: накопительная ёмкость, от размера которой зависит продолжительность функционирования в автономном режиме питаемого ею объекта.
- Инвертор, во многих гидрогенерирующих системах применяются инверторные системы. При наличии банка АКБ и контроллера заряда, гидросистемы мало чем отличаются от других систем, применяющих ВИЭ.
Простейшая мини гидроэлектростанция станция своими руками
Создать собственную мини-ГЭС своими руками способен почти каждый. Примеры? Многие туристы для получения освещения в условиях похода используют обыкновенный велосипед, на котором и передвигаются. На любое колесо велосипеда они устанавливают между спицами перемычки из кусков, скажем, тонкого железа и сначала руками, а затем плоскогубцами заводят края листа за спицу, тем самым фиксируя перемычку. Длина перемычки должна соответствовать половине диаметра колеса, то есть перекрывать расстояние от обода до втулки. По сути, она должна быть равна длине спицы. Оптимальным будет установить четыре таких перемычки по типу сторон света: Север, Юг, Запад, Восток. Далее потребуется обычный велогенератор и фонарик подключенный к нему.
Пора выбираться в поход. На ночлег нужно остановиться у реки. Ну и пусть, что комары закусают! Зато получится сделать видео вечеринки, наделать фотографий у костра. Это же очень живописно! Вода в реке должна иметь заметное течение и тогда наша походная мини гидроэлектростанция будет работать. «Да будет свет!» — сказал монтер и сделал замыкание. Нет, это не про нас.
«Да будет свет!» — сказал турист и опустил колесо с перемычками из железа на треть в воду бегущей реки. Сам велосипед ставится на небольшую подставку, или подвешивается за дерево или колышек на берегу так, чтобы колесо на треть было погружено в поток. Вода давит на перемычки, крутит колесо, генератор преобразует энергию воды в ток и мини-фонарик освещает место стоянки.
Нет риска, что батарейки попались бракованные, как в случае применения обычного фонаря, нет риска, что они «сядут», их не надо брать собой в поход в большом количестве. Течение реки никуда не исчезнет. Туристы, чаще всего, предпочитают останавливаться в проверенных местах. Так что, единожды получив электрический ток посредством минивело-ГЭС на месте ночлега, они будут помнить это место и постараются коротать темное время суток именно здесь.
Пропеллерная станция
На раме в вертикальном положении располагается ротор и подводный ветряк, опускаемый под воду. Ветряк имеет лопасти, которые вращаются под воздействием потока воды. Лучшее сопротивление оказывают лопасти шириной два сантиметра (при быстром потоке, скорость которого, тем не менее, не превышает двух метров в секунду).
В данном случае лопасти приводятся в движение за счет возникающей подъемной силы, а не за счет давления воды. Причем направление движения лопастей перпендикулярно направлению течения потока. Этот процесс похож на работу ветровых электростанций, только работает под водой.
Использование[править | править код]
Интерфейс геотермального генератора.1 — слот для вёдер или капсул с лавой;2 — слот для пустых вёдер или капсул;3 — внутренний резервуар для лавы;4 — внутренний буфер для электроэнергии;5 — слот для зарядки переносных энергохранителей.
Геотермальный генератор работает за счёт преобразования лавы в электроэнергию. Одно милливедро (мВ) лавы даёт 10 еЭ, а одно ведро или капсула (1000 мВ) — 10 000 еЭ
Геотермальный генератор останавливается и не расходует лаву впустую, если энергия не потребляется, что важно, если каждая единица энергии на счету. Ёмкость внутреннего резервуара для лавы — 8 000 мВ (8 вёдер или капсул), ёмкость внутреннего буфера энергии — 2 400 еЭ
Выходное напряжение — 20 еЭ/т (400 еЭ/с); объём энергии в 10 000 еЭ будет выделяться на протяжении 25 секунд.
Как любой другой источник электроэнергии, геотермальный генератор может заряжать напрямую переносные энергохранители.
Геотермальный генератор относится к первой энергетической категории (так же, как обычный генератор, аккумулятор, базовый энергохранитель и большинство основных прикладных механизмов).
Эффективностьправить | править код
Соответствующим геотермальному генератору источником тепловой энергии (еТЭ) является жидкостный теплообменник, работающий на охлаждении жидкостей. На 1 ведро выделяется 20 000 еТЭ. В отличие от геотермального генератора, теплообменник может принимать помимо лавы также горячий хладагент (выделяется в жидкостных ядерных реакторах) и регулировать выделение тепловой энергии (за счёт изменения количества теплоотводов) — от 20 еТЭ/т до 100 еТЭ/т, что эквивалентно диапазону от 10 еЭ/т до 50 еЭ/т при использовании генератора Стирлинга для превращения тепловой энергии в электрическую (1 еЭ на 2 еТЭ). Кроме того, теплообменник превращает обычную лаву в базальтовую, которая служит источником базальта — крепкого строительного блока. Геотермальный же генератор не выделяет побочных жидкостей.
Комбинация жидкостного теплообменника и генератора Стирлинга по производительности примерно равна геотермальному генератору (10 000 еЭ на одно ведро), однако заметно дороже. Если вам не нужны регулирование выделения энергии и базальт, достаточно использования обычного геотермального генератора. Более эффективно применение теплообменника (и лавы) вместе с кинетическим генератором Стирлинга или парогенератором, подающим пар в паровую турбину, однако их сооружение технологически сложнее и дороже, чем использование обычного генератора Стирлинга. Кроме того, генератор Стирлинга относится ко второй категории, а названные альтернативные генераторы — к третьей в связи с использованием кинетического генератора, поэтому для их использования вместе с рядом машин необходимо использовать трансформаторы.
Геотермальный генератор можно назвать одним из самых производительных из генераторов первой категории (наравне с полужидкостным). Значительные запасы лавы находятся под землёй в Верхнем мире, а также в Нижнем мире. Для полной зарядки МЭСН, ёмкость которого 300 000 еЭ, необходимо 30 вёдер или универсальных жидкостных капсул. Поскольку последние складываются, то для массовой переноски лавы лучше использовать их. Чтобы произвести такое же количество энергии с помощью обычного генератора, необходимо затратить 75 единиц угля или 8 угольных блоков. С округлением в сторону уменьшения, для создания блоков потребуются 8 × 9 = 72 единицы каменного (не древесного) угля. Особенно эффективно использование геотермального генератора в Нижнем мире — лавовые моря дают колоссальный источник энергии. Для создания 30 УЖК необходимо 60 оловянных слитков, что требует добычи значительного количества руды, но выгоды от их использования окупают все затраты. Полужидкостный генератор также позволяет получать большие объёмы энергии (порой даже больше, чем геотермальный), но для его работы необходимо предварительное производство топлива — например, биогаза (32 000 еЭ за ведро, производительность выше более чем в 3 раза), тогда как лава после добычи может быть использована сразу.
Как ингредиент при крафтеправить | править код
Ингредиенты | Процесс | Результат |
---|---|---|
Универсальная жидкостная капсула +Железная оболочка +Геотермальный генератор |
Полужидкостный генератор |