Виды котлов-утилизаторов

Чем водогрейные котлы отличаются от прочих отопительных приборов

Водогрейный твердотопливный котел представляет собой прибор, внутри которого в результате сгорания твердого топлива температура носителя достигает 95-115 ℃. При этом горячая вода в теплообменнике циркулирует под давление 0,6 МПа. Это главная отличительная черта водогрейных котлов от прочих приборов, в которых движение теплоносителя сначала в котле, а затем и в отопительном контуре, происходит свободно.

Обратите внимание, что при использовании водогрейных котлов теплоносителем выступает обычная водопроводная вода с добавлением определенных примесей и присадок. Эти добавки необходимы, чтобы максимально продлить срок эксплуатации сложного водогрейного контура, то есть трубопровода, по которому циркулирующий теплоноситель нагревается до определенной температуры.

Когда вода внутри контура нагревается да близкой к кипению температуры, на его стенках начинают активно откладываться растворенные в воде примеси. Ни в коем случае нельзя допустить закипания котловой воды. Поскольку подогрев теплоносителя производится под давлением, он не доходит до кипения. При этом давление теплоносителя внутри водяного контура всегда выше, тем давление воды в точках максимального нагрева. Особенность водогрейных котлов на твердом топливе заключается в том, что в них необходимо больше котловой воды для нагрева системы, чем для всех прочих.

Теплоноситель, который разогрелся до 115 ℃, отдает тепловую энергию в систему отопления. При этом давление в трубопроводах отопительного котла удерживается на стабильном уровне. В такой системе повышение давления внутри теплообменника благоприятно скажется на ее работе, поскольку при этом выравнивается температура теплоносителя по всей протяженности трубопровода, а накипь не выпадает на его стенках.

Что касается топочной камеры, то в водогрейных котлах она выглядит практически так же, как и в любых других твердотопливных аппаратах. Выбранный вид твердого топлива, чаще всего уголь, поступает в топку, где и сгорает. Тепловая энергия сквозь стенки топливника передается циркулирующей внутри теплообменника воде. При производстве водогрейных котлов производители конструируют их таким образом, чтобы топливо сгорало интенсивно и максимально эффективно отдавало тепло.

Чтобы остудить образующиеся внутри топки продукты горения, котлы оборудуют конвективными пакетами. Соприкасаясь с их широкой поверхностью, угарные газы остывают до 200 ℃. Примечательно, что более интенсивное охлаждение продуктов горения может привести к выпадению конденсата.

Что такое котел утилизатор

Котлы для регенерации бросового тепла устанавливаются в промышленности, особенно на заводах по выработке этилена и аммиака, серной и азотной кислот. Котлы утилизаторы отходящих газов паросиловых установок применяются, чтобы повысить общий К.П.Д. тепловых станций.

Источник фото: hurstboiler.com

Конструкционно котел выполнен, как нечто среднее между обычным кожухотрубным теплообменником и жаротрубным котлом. Его первоначальной функцией было охлаждение высокотемпературного отработанного газа, в качестве побочного продукта, он выполнял генерацию пара низкого давления.

Сегодня аспект защиты окружающей среды приобретает все большее значение, требования к условиям эксплуатации, стали все более жесткими, поэтому выработка вторичных энергоресурсов, стала неотъемлемой частью любого нового или реконструированного проекта.

Вторичная энергия, полученная от КУ в виде пароводяной или воздушной смеси, используется при производстве электроэнергии или в когенерационных схемах. Котлы изготавливаются, как отечественными, так и зарубежными заводами и предназначены для регенерации вторичных энергоресурсов.

При всем внешнем сходстве с обычными технологическими котлами, утилизаторы обладают значительными отличиями.

Особенности оборудования:

  1. В конструкции отсутствует топочное устройство или камера сгорания, если использует тепло, от других тепловых процессов. Топка в таких котлах применяется, если в рабочих средах есть химический компонент тепла, который необходимо получить в процессе горения.
  2. Наличие микро отходов в дымовых газах (пыль, несгоревшее топливо, металлические частицы) связанных с технологией, поэтому требуется, чтобы утилизаторы имели не менее двух отсеков с газотурбинными камерами и перепускной канал с вентилем для регулирования рабочих параметров горения. Этот обход используется утилизатором, для эффективного теплообмена и сводит к минимуму аварии из-за температурных и эрозионных перенапряжений корпуса, работающего в экстремальных зонах. С этим также связано то, что рабочие элементы и расходные материалы изготавливаются из специальных марок стали.
  3. Корпус загерметизирован, а испарительные змеевики замкнуты в одном контуре использующий циркуляционный насос и по газовому тракту, имеющий выход в дымоход.
  4. Корпус выполнен из стальных листов толщиной от 15 до 20 мм, который должен надежно противостоять интенсивному рабочему процессу, в среде с высокими параметрами по давлению и температуре.
  5. Обычно газовые поверхности защищены от износа специальными трубными гильзами стали X17. Также конструкция КУ должна обеспечивать герметизацию установки.
  6. Испарительные элементы, установленные в газоходах котла создают общий циркуляционный контур.
  7. Уходящие газы после технологических процессов имеют в своем составе пыль и другие агрессивные вещества, которые нужно удалять до поступления в котел. Для этого используют мощные циклоны и электрофильтры, но даже они не обеспечивают полную очистку газовой среды.
  8. Пыль неравномерно откладывается на поверхности нагрева и снижает теплоотдачу, что вызывает перекос змеевиков из-за неравномерности нагрева, а присутствие в газах соединений Ca, Na, S способствуют образования на поверхностях нагрева твердых отложений, вызывающих коррозию в контуре испарения, влияет на проходимость сред. Поэтому современные КУ оборудуются топкой для дожигания уходящих газов.

Типичный КУ имеет:

  • барабан;
  • испаритель без перегревателя;
  • экономайзер воды.

Эффективность теплообменника зависит от трех факторов: температуры газа на входе в котел, объема и способа доставки источника вторичных энергоресурсов.

Виды оборудования

Всего существует два основных типа котлов утилизаторов:

  • 1.    Паровой, который использует энергию от газообразной воды. Затем на его стенках происходит конденсация, и жидкость возвращается к своему привычному для нормальных условий состоянию. Воду потом можно использовать для механической работы, хотя для дома это не будет актуально.
  • 2.    Котлы утилизаторы отходящих газов, которые работают по описанному выше принципу. Стоит только добавить, что в промышленности сжигаемое топливо часто в качестве отходов выбрасывает в атмосферу еще и большое количество сажи. Ее наличие будет недопустимо для утилизатора, поэтому придется ставить дополнительный фильтр на пути следования дыма. Он будет очень быстро забиваться, так что примерно раз в неделю придется заниматься его прочисткой.

Целесообразность каждого вида техники определяется эффективностью и полезностью от ее использования. КПД котла утилизатора находится на уровне 50%, что является недопустимо мало для системы отопления. С другой стороны нужно учитывать, что для получения тепловой энергии не затрачивается вообще никаких ресурсов. Вся полезность поступает от отходов, которые без утилизатора попросту были бы выброшены в атмосферу.

Тогда получается, что его установка вполне себя оправдывает, хотя на окупаемость уйдет несколько лет. Не стоит сбрасывать со счетов и положительное влияние на экологию. Загрязнение воздуха на сегодня стало глобальной проблемой, поэтому возможность немного ослабить негативное влияние, пускай и в локальном масштабе, нельзя упускать.

Цена котла утилизатора заводского производства будет составлять более 30 тысяч рублей. Если построить машину самостоятельно, то можно вложиться в сумму 12-15 тысяч. А стоимость промышленных агрегатов вообще доходит до полумиллиона рублей, поэтому не каждое предприятие решается на такой апгрейд.

Комплектующие

Конструкция котла утилизатора состоит из:

  1. Нагнетательных вентиляторов, функция которых – обеспечивать подачу воздуха; для вентиляторов существует двухрежимное управление:
    • автоматическое при помощи блока управления;
    • ручное;
  2. Защитного клапана;
  3. Камеры загрузки, используемой для укладки топлива, в ней образуются пиролизные газы. Для ее изготовления применяют жаростойкий материал. Прилегает дверца герметично для безопасного функционирования, также предусмотрена дополнительная дверца со смотровым окном;
  4. Камеры горения, где сжигаются пиролизные газы; она изготавливается из листовой стали;
  5. Озонатора (второй камеры, где горят пиролизные газы);
  6. Горелки и ловушки факела, расположенных между двумя камерами; через горелку подаются газы; соединяются газ, воздух и озон;
  7. Теплообменника, забирающего на себя все произведенное тепло с помощью водяной рубашки и передающего его теплоносителю;
  8. Дымоходного клапана, обеспечивающего догрузку топливных материалов без дыма;
  9. Навеса (для наружной установки).

 Все конструктивные части, в которых происходит горение, производят из жаростойких материалов. Согласно требованиям конструкции и желанию покупателя могут быть дополнительные комплектующие, такие как дополнительный источник подачи бесперебойной электроэнергии, если часто отключают электричество.

Стоит отметить: при недостатке подачи кислорода происходит процесс тления, что позволяет увеличить температуру в агрегате, время между загрузками топлива также увеличивается, а на выходе нет дыма.

Технические характеристики, параметры подбора утилизаторов

Как правило, сбросные системы для отработанных газов на промышленных предприятиях имеют массу индивидуальных отличий. Тогда как теплотехнические условия, создаваемые котлами хозяйственного или бытового назначения, гораздо более однообразны (типичны). Поэтому утилизационные системы для промышленных и больших коммунальных предприятий обычно требуют индивидуального проектирования, для малогабаритных типовых котельных или бытовых отопительных котлов (печей) – могут быть подобраны из серийных (типовых) моделей.

К основным техническим характеристикам утилизаторов (экономайзеров) относятся:

  • теплообменная площадь, м2;
  • тепловая мощность, Вт;
  • производительность по воде или пару, м3/ч;
  • рабочее давление в водяном контуре, Бар
  • максимальная и рабочая температура газа на входе;
  • температура газа на выходе;
  • аэродинамическое сопротивление, Па;
  • гидравлическое сопротивление водяного контура, Па;
  • материал изготовления (жаропрочный, коррозионностойкий).

Для качественного подбора утилизатора тепла для своей системы отвода отработанных газов, следует знать (определить) такие ее параметры:

А) Свойства отработанных газов:

  • физическая плотность;
  • точка росы для компонентов газа;
  • химический состав;
  • загрязненность и склонность к отложениям.

Б) Условия в сбросной системе (дымоходе):

  • температура газа на входе и выходе;
  • количественный расход отработанных газов (объемный или массовый);
  • тепловой поток;
  • расчетное давление газа;
  • допустимая потеря давления газа в теплообменнике.

В) Требуемые параметры для водяного контура:

  • температура воды на входе;
  • требуемая температура воды на выходе;
  • требуемая производительность по горячей воде;
  • рабочее давление;
  • допускаемая потеря давления (гидравлическое сопротивление);
  • расчетный срок службы.

Особенности оборудования

Котел утилизатор работает без собственной топочной камеры. Такой агрегат использует тепло, получаемое в ходе других технологических процессов.

Одна из характерных черт функционирования промышленных утилизационных систем состоит в том, что в выходящих газах могут находиться множество небольших частиц. Они бывают в жидком, твердом или газообразном виде. Возникают частицы вследствие работы производственных установок и представляют собой осколки металла, шихты, шлака или окалины. Жидкие частицы — результат выплавки металлов. В целом, образование этих микроотходов связано с повышенными температурами, применяемыми при металлообработке.

На эффективность утилизации выходящих газов оказывает влияние тепловая мощность отопительного агрегата, режим подачи в него отходов и их температура. Объем и температура выходящих газов зависит от количества сжигаемого топлива и характера промышленного процесса. Значительный объем шихтовых газов выдается в цветной и черной металлургии — при продувании конвертеров кислородом.

Схема котла-утилизатора с принудительной циркуляцией: 1 — барабан; 2 — испарительная часть; 3 — пароперегреватель; 4 — водяной экономайзер.

Как сказано выше, на функционирование утилизатора большое влияние оказывает режим подачи в него газов. Промышленное оборудование (особенно это относится к конвертерам) часто работает циклично, что отрицательно сказывается на продуктивности котельного агрегата.

Котел утилизатор можно классифицировать по следующим параметрам:

  1. По температуре газа, подающегося в агрегат. По этому параметру оборудование подразделяется на: низкотемпературное (менее 900 градусов) и высокотемпературное (свыше 1000 градусов). В условиях низких температур передача тепловой энергии осуществляется благодаря конвекции, а при высоких показателях — в процессе излучения. При температурах, превышающих 1100 градусов, жидкие продукты сгорания меняют свое агрегатное состояние.
  2. По паровым характеристикам котел утилизатор может относиться к 3 классам: оборудования с низким давлением (1,5 МПа и 300 градусов), с повышенным давлением (4,5 МПа и 450 градусов), и с высоким (от 10 до 14 МПа и 550 градусов).
  3. По принципу передвижения жидкости, пара и продуктов сгорания утилизационные котлы разделяются на два типа: газотрубные и водотрубные.
  4. По способу передвижения жидкости в испарительном контуре утилизирующее оборудование дифференцируется на котлы с естественной и принудительной циркуляцией.
  5. По комплектации и нагревательным поверхностям оборудование подразделяется на такие типы: башенный, горизонтальный и туннельный. В низкотемпературных устройствах применяется змеевиковая конвективная нагревательная поверхность. В высокотемпературных модификациях — конвективно-радиационная поверхность.

Тепловой расчет утилизатора

Имея перед собой характеристики выходящих газов ГТУ, параметры пара и зная температуру воды, можно сделать тепловой расчет котла утилизатора. Задача расчета состоит в выяснении показателей воды, пара и газа, передаваемых в отдельных областях утилизатора. Это даст возможность установить их поверхность и избрать нужные конструктивные формы.

Делая расчет, нужно принимать во внимание тот факт, что тепловая энергия поступает от горячих газов к пару или воде, а значит, температура газов всегда больше, чем температура воды или пара. Однако чем меньше разница между этими температурами (температурный напор), тем рациональнее отдается тепловая энергия в паротурбинный контур

Котел утилизатор. Устройство и принцип работы

Котел утилизатор, принцип работы которого сводится к использованию тепла отходящих газов иной установки (промышленной либо энергетической), не имеет собственной топки.

Устройство котла утилизатора

Котел утилизатор имеет газовод, образованный обшивкой из металла, в котором расположены поверхности нагрева. Они соединяются с каркасным перекрытием. Обшивка из металла закреплена к колоннам каркаса, находящимся на поверхностях нагрева. Газоход и диффузор, снабженные изоляцией, имеют обшивку из металла.

Шумоглушитель и конфузор образуют выходную часть газохода (он опирается на металлоконструкции), покрытую слоями из изоляции и обшивки.

Поверхности нагрева представляют собой трубчатые вертикальные блоки, имеющие сплошное оребрение и поперечное пресечение. Осуществляя ход, газы проходят через установленные в системе ИНД, ПНД, ПВД, ГПК, ЭВД, ИВД.

На верхней части оборудованы тепловые ящики, которые съемными щитами из металла отделены от газов.

Выходная часть газовода имеет отсечной клапан электрофицированный, необходимый для обеспечения постоянного состояния котла даже при остановке работы. Сразу за ним расположен двухступенчатый шумоглушитель. За котлом установлен компенсатор.

Работа котла-утилизатора обеспечивается скользящими парами разного давления, которые определяются расходом и их температурой. Поступление газов в котел-утилизатор осуществляется из газотурбинной установки.

Типы котлов утилизаторов – водогрейные и паровые; с дожигающим устройством и без дожигающего устройства, горизонтальные и вертикальные; самоопорные и подвесные.

Помощь в обслуживании

При необходимости более детальной информации о котле утилизаторе, его принципе работы и других данных позвоните нам по телефонам (831) 253-57-44, 254-78-38. Компания «ЦЭЭВТ» изготавливает кожухотрубные теплообменные аппараты по улучшенным  индивидуальным схемам и чертежам, которые по некоторым характеристикам превосходят аналоги других производителей.

Также производим срочный монтаж котла утилизатора.

Газотрубный утилизатор

Газотрубные котлы выпускаются с горизонтальным и вертикальным их расположением, могут использоваться совместно с обжиговыми, мартеновскими и другими печами, которые имеют сравнительно небольшую мощность.

Газ, температура которого около 1200°С, выходит из печи и попадает в нижнюю часть газохода котла. Там установлены W-образные трубные ленточные и экранные настенные поверхности, конвективный пакет пароперегревателя. Тепло превращает воду в пар, и пароводяная смесь начинает циркулировать в указанных поверхностях. Во время работы утилизатор вырабатывает пар, давление которого до 4,5 МПа и температура до 440°С, что позволяет обеспечить электрическую мощность до 8 МВт. Чтобы поддерживать постоянный тепловой потенциал газов, поступающих в утилизатор, установлен предтопок с газовой горелкой.

Все газотурбинные утилизаторы имеют одинаковый принцип работы, независимо от того, в какой отрасли они используются. Они применяются для охлаждения отходящих газов, технологических установок, что имеют небольшую мощность.

Особенности конструкции экономайзеров

Специфика конструкции экономайзера котла во многом зависит от характеристик самого котла. Для безопасной работы оборудования в конструкцию экономайзеров котлов вносятся изменения и усовершенствования, дающие возможность максимально использовать возможности.

Прежде всего, это касается устройств кипящего и некипящего типов. При нагреве воды до высокой температуры во внутреннем объеме теплообменника образовывается водяной пар. В высокотемпературных установках количество водяного пара может достигать 20-24% от объема воды. Такой экономайзер котла оборудуется клапанами сброса пара, и устройствами контроля давления. Кипящие экономайзеры изготавливаются из стали, чугунное литье для такого оборудования не используется.

Не кипящие устройства только прогревают воду перед подачей в котел, в них температура не повышается до критической, а пар выводится из системы.

Еще одним различием этих устройств выступает их назначение. Есть экономайзеры котлов паровые и водогрейные. Паровой экономайзер котла предназначен для прогрева воды до порога парообразования. Такой технологический прием используется в паровых котлах, где конечным продуктом выступает водяной пар высокого давления, а не вода. Водогрейный экономайзер котла отопления предназначен для предварительного прогрева воды. Это нужно для того чтобы нагреть воду и пройти «точку росы» еще до подачи ее в водогрейный котел.

Конструкция экономайзера

Поскольку в устройстве производится нагрев воды, то в его конструкции нет ничего необычного, он представляет собой не что иное, как обычный теплообменник с подключением к системе через трубы.

Основу прибора составляют трубы, которые для повышения площади нагрева располагаются в шахматном порядке. При прохождении через теплообменник горячие потоки отработанных газов буквально окутывают трубы теплообменника и передают тепло теплоносителю.

В зависимости от объемов системы и ее назначения экономайзеры изготавливаются из материалов способных выдержать большие механические нагрузки и долгое время работать в агрессивной среде продуктов горения топлива.

По материалу изготовления экономайзеры бывают:

  • Литые чугунные;
  • Из стали;
  • Из нержавеющей стали;
  • Из цветных металлов.

Для больших по объему котлов промышленного оборудования используются чугунные или стальные трубы. Чугун способен выдерживать большое давление и в долгое время находится в агрессивной атмосфере. Недостатком чугуна является его хрупкость, это особенно ярко проявляется при гидравлических ударах – он не способен противостоять резкому повышению внутреннего давления.

Стальные трубы более практичные, их легче монтировать, они способны выдерживать высокое рабочее давление и гидроудар. Другое дело, что при сварке конструкции узким местом выступает сварные швы. Именно они наиболее подвержены коррозии.

Применение нержавеющей стали для изготовления экономайзера позволяет продлить срок его эксплуатации. Выполненные из металла не подверженного коррозии нержавеющие теплообменники считаются наиболее надежными. Недостатком их принято считать высокую стоимость по сравнению с чугунными и обычными стальными.

Использование цветных металлов для изготовления теплообменника в основном нашло применение для бытовых небольших экономайзеров котлов отопления. Эти приборы отличаются высокой эффективностью при компактных размерах.

Водотрубный утилизатор

Утилизаторы, имеющие многократную принудительную циркуляцию, широко используются в промышленности. То, что такой анализатор имеет принудительную циркуляцию, позволяет испарительный элемент делать любой формы и ориентации в пространстве.

В таких котлах испарительная система распределяется на несколько секций, они подключены параллельно, это позволяет значительно снизить сопротивление испарительной части и использовать циркуляционные насосы меньшей мощности.

Вода, которая питает утилизатор, поступает через водяной экономайзер, а затем в барабан котла. Отсюда при помощи насоса вода через шламоотделитель идет в испарительные пакеты, которые включены параллельно. Полученная пароводяная смесь в барабане сепарируется, и вода отделяется от пара. После чего пар через пароперегреватель идет к потребителю. В зависимости от того, где надо установить утилизатор, его компоновка может быть П-образной, башенной или горизонтальной.
Котлы-утилизаторы в парогазовых и когенерационных установках
В парогазовых установках используются котлы-утилизаторы, которые рассчитаны для получения пара среднего и высокого давления для дальнейшего его использования в паровой турбине. В таком котле источником энергии также является энергия отходящих газов. Здесь используются водотрубные котлы, у которых конвективные поверхности нагрева и многократная принудительная циркуляция. От мощности паровой турбины будет зависеть конструкция котла, он может быть одноконтурным или иметь 2 независимых контура, в которых будет разное давление пара.

Такие барабанные утилизаторы вырабатывают пар, давление которого от 0,65 до 8 МПа, а также горячую воду, за счет того, что утилизируют тепло выхлопных газов от газотурбинной установки.

https://youtube.com/watch?v=DUemT5ixtWA

Вспомогательное оборудование котельной

Для того чтобы в котле эффективно протекали процессы теплопередачи, все потоки воды, топлива и воздуха должны пройти процесс подготовки, перед подачей в агрегат. Эти задачи выполняет вспомогательные котельные установки.

Группа насосов в котельной

К вспомогательным элементам котлоагрегата относят устройства:

  • системы топливоподачи;
  • системы дымоочистки;
  • тягодутьевые аппараты;
  • и насосы, отвечающие за движение воды по контуру;
  • сепарационные устройства котла;
  • установка водоподготовки.

К тягодутьевым аппаратам относятся дымососы и вентиляторы работающих в системе газовоздушных трактов котла. Первые служат для создания разряжения в топочной камере и отвода дымовых газов через дымовую трубу в атмосферу.

Они устанавливаются между газоходом и дымовой трубой, обычно вне помещения котельной, сзади котла, из-за высокого уровня шума, создаваемого при работе.

Вентиляторы предназначены для принудительной подачи воздуха в топочную камеру, для создания газовоздушной смеси на выходе из газовой горелки, для обеспечения полного сгорания топлива. Устройство также устанавливается вне здания котельной, но перед фронтом котла.

Сепарационные устройства служат для сепарации пара от котловой воды, их монтаж выполняют в верхнем барабане котла. Система водоподготовки занимается очисткой питательной воды от солей жесткости в натрий-катионитовых фильтрах для уменьшения процессов накипеобразования на котловых поверхностях нагрева котла и удаление активного кислорода в деаэрационно-питательной установке, для уменьшения коррозионных процессов во внутренних поверхностях нагрева теплогенератора.

Для питания паровых котлов, устанавливают не менее двух электронасосов, с рабочим давлением не менее 1.25 давления водяного тракта котла, и производительностью 110% от номинальной паропроизводительности всех работающих котлов.

Кроме того устанавливают два паровых насоса не менее 50% номинальной производительности котельной.

Насосы котельной подразделяются:

  1. Питательные — предназначены для подачи питательной воды в котел.
  2. Подпиточные – для подпитки контура теплоснабжения при утечках теплоносителя в магистральных сетях.
  3. Сетевые для циркуляции теплоносителя в подающем и обратном трубопроводе. Они также используются и для водогрейных котельных.
  4. Насосы ХВО — в системе химводоподготовки.
  5. Газовое оборудование.

2.5.1 Тепловой расчет котла – утилизатора

“Q – t” представлена на рисунке 1.

Рисунок 1 — “Q – t” диаграмма

Расчет начинаем с составления уравнений тепловых балансов парогенерирующей части КУ и составления “Q – t” диаграммы для КУ. Для этой цели принимаем с определенным запасом давление перегретого пара и оцениваем гидравлическое сопротивление пароперегревателя МПа. Это позволяет определить температуру насыщения в барабане КУ. Задаемся температурным напором на “горячем” конце пароперегревателя ΘПЕ= θКТ – tПЕ=20÷30 оС, температурным напором на “холодном” конце испарителя ΘИ= θ2 – t=8÷10оС, а так же некоторым запасом по температуре воды за экономайзером 8÷12оС (защита от вскипания жидкости).

Использованы следующие уравнения теплового баланса:

GКТ·(hКТ – h2)·φ = DПЕ·(hПЕ — h) = QПЕ,

GКТ·(h2 – h3)·φ = DПЕ·(h- h) = QИ,

GКТ·(h3 – h4)·φ = DПЕ·( h– hПН) = QЭК.

Коэффициент сохранения теплоты в КУ принимаем φ=0,994÷0,996.

Продувкой воды в барабане пренебрегаем.

При решении этих уравнений задаемся расходом генерируемого перегретого пара DПЕ, так чтобы обеспечивать принятые выше температурные напоры. Контрольным является и значение температуры газов за экономайзером θ3=tПЕ+Θ3. Температурный напор принимаем в пределах Θ3= 30÷40 оС.

Из теплового баланса смесителя уточняем величину впрыска Dвпр, обеспечивающего заданные параметры технологического пара.

В расчете определено:

DПЕ=24,5 кг/с, рПЕ=1,52 МПа, tПЕ=493 оС,

DВПР=3,42 кг/с, рБ=1,72 МПа, t=204,9оС,

ΘПЕ= 28 оС, ΘИ= 9,1 оС, tПН=108 оС, t=196,9оС.

2.5.2 Тепловой расчет гвто

Расчет выполняем, используя уравнение теплового баланса:

GКТ·(hПР – hУХ)·φ=GГВТО·(h- h)=QГВТО

Температура сетевой воды принята t= 60оС, t= 100оС, соответственно h=252,2 кДж/кг, h=420,3 кДж/кг. Это позволяет определить количество рецеркулирующей воды и общее количество воды, проходящей через ГВТО:

GГВТО=GСВ+GРЕЦ=GСВ·.

Принимаем температуру уходящих газов за КУ θУХ=80÷100 оС из уравнения теплового баланса рассчитываем расход сетевой воды GСВ. В результате расчета получено:

Θ1=443,3 оС, h2=481,6 кДж/кг;

Θ2=213,6 оС, h3=226,8 кДж/кг;

Θ3=165,4 оС, h4=174,8 кДж/кг;

ΘУХ=100 оС, hУХ=105,1 кДж/кг;

GСВ=69,25 кг/с, hОС=230,6 кДж/кг.

2.5.3 Тепловой баланс пикового сетевого подогревателя

Составим уравнение теплового баланса пикового сетевого подогревателя:

GСЕ·(hПС – h) = DПЕ·(hПЕ – hДР)·η.

В расчете принято: tДР=100 оС, η=0,998 и определено:

DПБ=2,87 кг/с, hПС=546 кДж/кг.

2.5.4 Тепловой расчет деаэратора питательной воды

Материальный баланс деаэратора (продувкой барабана КУ пренебрегаем):

DПЕ+ DВПР= D+ DОК+ DДЕ+ DПБ,

DОК=0,9· DПЕ и DДЕ=0,1·DП

Тепловой баланс деаэратора:

(DПЕ+DВПР)·h=D·hПЕ+ DОК·hОК+ DДЕ·hДЕ+ DПБ·hДР

В расчетном режиме определено: D=0,38 кг/с, DП=24,68 кг/с, DОК=22,21 кг/с, DДЕ=2,47 кг/с.

В итоге определяем количество теплоты отпускаемой на ГТУ – ТЭЦ внешним потребителям:

— c технологическим паром: QП=DП·hП – DОК·hОК=67090 кВт;

— с сетевой водой: QП=GСВ·(hПС – hОС) = 21839 кВт.

2.5.5 Конструкторский расчет котла – утилизатора

Котел – утилизатор горизонтальной компоновки. Использована стандартная секция поверхности нагрева с оребренными трубами.

Составляем уравнения теплопередачи поверхностей нагрева КУ, для которых ранее определены количества теплоты по тепловому балансу:

QПЕ=kПЕ·FПЕ·,

QИ=kИ·FИ·,

QЭК=kЭК·FЭК·,

QГВТО=kГВТО·FГВТО·.

В результате расчета определено:

кП=30 Вт/м2град, =98,2оС; kЭК=40 Вт/м2град, =33,3оС;

кИ=40 Вт/м2град, =83,9оС; kГВТО=40 Вт/м2град, =51,7оС.

Число стандартных секций в одном ряду КУ по ходу газов b = 4 и рассчитываем поверхность нагрева стандартной секции (dн= 30 мм; hРЕБ= 11 мм; bРЕБ= 7 мм; δРЕБ= 2 мм.): FСЕК= 647,5 м2.

В соответствии с конструктивной схемой справедливо соотношение:

F=b·z·FСЕК,

где z – число рядов секций по ходу газов соответствующей поверхности нагрева.

В результате расчета определено:

FПЕ= 5180 м2, zПЕ= 2, bПЕ= 4;

FИ 15540 м2, zИ= 6, bИ= 4;

FЭК= 2590 м2, zЭК= 1, bЭК= 4;

FГВТО= 7770 м2, zГВТО= 3, bГВТО= 4.

Суммарная поверхность КУ: FКУ= 31080 м2,

Число рядов секций по ходу газов: zКУ=12.

Принцип работы экономайзера

Свое название это устройство получило от английского «economize» — «экономить, сберегать». Впервые экономайзер был применен в 1893 году, когда устройством предварительного нагрева был оснащен паровой котел. С тех пор экономайзер стал почти обязательным элементов водогрейной установки.

Принцип работы этого прибора идентичен принципу работы парового или водяного котла – нагрев проточной воды в замкнутом контуре. Правда, если в обычном котле вода нагревается в водяной рубашке, в которой находится топка или в теплообменнике над горелкой, то для нагрева теплоносителя используются продукты горения. Проще говоря, в экономайзере используются продукты горения топлива, имеющие высокую температуру, но при этом уже покинувшие объем котла.

Вторым важным отличием экономайзера от нагревательного котла выступает назначение. Водяной или паровой котел нагревает воды и подает ее дальше в систему отопления или горячего водоснабжения. Экономайзер предназначен только для предварительного нагрева воды перед подачей ее в контур водяного котла.

Важность этого момента заключается в том, что при работе системы отопления, после того как теплоноситель пройдет по системе труб и радиаторов и отдаст тепло при попадании в котел он охлаждается до 42-50 градусов Цельсия. После чего требуется затраты топлива и энергии до повышения температуры теплоносителя до стандартных 80-90 градусов (речь идет об автономных системах отопления частных домов)

При включении в систему отопления, экономайзер котла, используя горячие отработанные газы из камеры сгорания или топки, повышает температуру воды до 50-55 градусов перед подачей ее в котел. Такой прибор позволяет почить чистую экономию до 15% энергоносителей и повысить эффективность работы до 15%.

Отличия газо- и водотрубных котлов по схеме работы

Емкость, позволяющая создавать пар, обычно выполняется из одной или нескольких труб. Находящая в них вода прогревается за счет разогретых газов, выделяемых в процессе горения топлива. Такая конструкция подразумевает, что газ сам поднимается к заполненным водой трубам, и устройства, работающие по такому принципу, называются газотрубными котлами.

В другом типе котлов газ перемещается по трубе в самой емкости с водой. Емкость в данном случае называется барабаном, а сам котел относится к категории водотрубных. Заполненные водой барабаны могут располагаться горизонтально, вертикально, радиально или же комбинировано, в зависимости от чего выделяют соответствующие виды водотрубных котлов.

Сравнение особенностей рассматриваемых видов котлов позволяет сделать следующие выводы:

  1. Первое отличие – разные размеры используемых труб. Газотрубные устройства оснащаются достаточно большими трубами по сравнению с изделиями, которые используются в водотрубных котлах.
  2. Следующее отличие заключается в разнице мощностей. Предельное значение мощности газотрубных котлов составляет 360 кВт, а максимальное давление не может превышать 1 МПа. Высокое давление и объем пара требуют увеличения толщины стенок устройства, что негативно сказывается на итоговой стоимости котла. Водотрубные котлы такого недостатка лишены – для них вполне могут использоваться тонкие трубы, позволяющие добиться большей температуры и давления по сравнению с газотрубными аналогами.
  3. Водотрубные котлы отличаются не только мощностью и более высокой температурой. К их преимуществам относится еще и возможность выдерживать серьезные перегрузки, что говорит о большей степени безопасности подобных устройств.

Утилизаторы для дома

Котлы-утилизаторы для дома не используются и точка. Это огромные агрегаты промышленного назначения. Утилизировать газы, которые появляются в процессе эксплуатации дома просто нерентабельно, а значит не нужно. Поэтому для домов любых размеров, включая многоквартирные строения, утилизаторы не используются. Этот аппарат был изобретен для заводов и исключительно в промышленности используется до сих пор.

Котел утилизатор — это устройство, работающее на тепловой энергии, получаемой из газов дизельного и газотурбинного оборудования, а также, сушильных барабанов, туннельных и вращающихся печей. Такие котлы используют энергию, которая в противном случае, была бы потрачена впустую, ведь на промышленных предприятиях значительная часть газов выбрасывается просто в атмосферу. Между тем, температура выходящих градусов может доходить до тысячи градусов, поэтому не использовать такую энергию было бы нерационально.

Утилизаторы позволяют задействовать тепло выходящих газов, повышая тем самым коэффициент использования топлива. Кроме того, утилизация дает возможность сократить выбросы в атмосферу вредных веществ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector