Газоразрядные лампы мощность, тип, принцип работы и давление
Содержание:
ЛАМПЫ ДЛЯ СИСТЕМ ОСВЕЩЕНИЯ
По типу источника света система искусственного электрического освещения делится на следующие виды:
Лампа накаливания (ЛОН).
Одна из первых и наиболее массово выпускаемых лампочек. Свет образуется в результате прохождение электричества через вольфрамовую проволоку с ее последующим накаливанием. В свет превращается не более 5% электроэнергии остальные тратятся на выработку тепла. Излучает жёлтый свет, срок службы редко превышает 1000 часов. Популярна из-за своей доступной стоимости;
Металлогалогенная лампа (МГЛ).
Является газоразрядной лампой высокого давления. Свет вырабатывают ионы в газовых галогенидах некоторых металлов. Для работы необходимо импульсно зажигающее устройство (ИЗУ) и дроссель (балласт). Срок службы около 15 тыс. часов. Эффективность претворения электроэнергии в свет выше на 20-25% чем у ламп накаливания.
Из недостатков следует отметить высокую стоимость и длительное время разгорания (30 сек. — 3 мин). Кроме того их невозможно включить повторно пока лампа не остынет.
Ртутные галогенные лампы (ДРЛ).
Свет вырабатывается электрическим разрядом в парах ртути. Технически полностью аналогичны металл галогеновым лампам. Срок службы до 10 тыс. часов, светоотдача до 55 лм/Вт. Имеется чувствительность к низким температурам и длительное время разгорание, которое может достигать 10 мин.
Одной из разновидностей ДРЛ являются ртутно вольфрамовые лампы (ДРВ) в их колбе кроме паров ртути имеется и вольфрамовая нить. Такие лампы могут использоваться без балласта и ИЗУ, но имеют гораздо меньший срок службы — до 4000 часов, а также низкая эффективность светоотдачи до 30 лм/Вт.
Натриевые лампы (ДНАТ).
Также относятся к классу газоразрядных ламп, свечение образуется в парах натрия. Излучают желто-оранжевый свет, из-за этого, несмотря на высокую эффективность, светоотдачи (150 лм/Вт), имеют ограниченную сферу применения. Экономичны, срок службы достигает 30 тыс. часов.
Для полного запуска необходимо до 7 мин. Часто используются в отраслях, где необходимо круглосуточное освещение, к примеру, в теплицах.
Компактные люминесцентные лампы (КЛЛ) (энергосберегающие лампы дневного света).
Как правило имеют спиралеобразный излучающий элемент на пластиковой основе, где расположен дроссель и ИЗУ, который заканчивается стандартными цоколями Е14/27/40.
Светодиодные лампы (LED).
Являются наиболее экономичными из всех существующих ныне. Срок службы составляет около 30 тыс. часов, а энергопотребление по сравнению с классическими лампами накаливания ниже в 10 раз. Они не содержат ртуть и выпускаются практически во всех цветовых вариациях. Единственным недостатком является довольно высокая цена устройств.
Область применения
За счет конструктивных особенностей и уникального принципа работы, а отчасти и благодаря доступности таких комплектующих, как конденсаторы для газоразрядных ламп, изделия сегодня более чем востребованы, причем в самых разных сферах жизнедеятельности человека.
Чаще всего свет от изделий можно увидеть:
- на улицах городов и сел исходящим от фонарей;
- в магазинах и производственных зданиях, торговых центрах и офисах, вокзалах и аэропортах;
- на пешеходных дорогах и в подсветке парков, скверов, фонтанов;
- на рекламных щитах;
- на фасадах зданий кинотеатров, концерт-холлов в комплекте с дополнительным оборудованием, способным увеличивать эффект от свечения.
Совершенно отдельным пунктом стоит отметить использование такого рода лампы для авто в фарах. Чаще всего здесь применяются неоновые лампы с высоким уровнем интенсивности света. Некоторые современные марки ТС уже оснащены фарами, заполненными ксеноном и металлогалоидными солями.
Лампы второго поколения имеют маркировку D2R и D2S, где R — это изделие для рефлекторной оптической схемы, S — прожекторной.
Нельзя не упомянуть и о роли лампочек такого типа в современной фотосъемке. Постановка света для создания качественной фотографии позволяет ощутить главные преимущества источника.
Импульсные газоразрядные лампы для освещения позволяют фотографировать с постоянным контролем светового потока. Они более яркие, экономичные, имеют компактные размеры. Из минусов использования изделий в этой сфере стоит отметить неспособность визуального контроля светотени, образуемой от источника света такого рода на фотографическом объекте в процессе.
Натриевые лампы низкого давления
Исторически первыми из натриевых ламп были созданы НЛНД. В 1930-х гг. этот вид источников света стал широко распространяться в Европе. В СССР велись эксперименты по освоению производства НЛНД, существовали даже модели, выпускавшиеся серийно, однако внедрение их в практику общего освещения прервалось из-за освоения более технологичных ртутных газоразрядных ламп, которые, в свою очередь, стали вытесняться НЛВД. Схожая картина наблюдается в США, где НЛНД в 1960-х гг. были полностью вытеснены металлогалогенными лампами. Однако в Европе НЛНД по сей день распространены достаточно широко. Одним из их применений является освещение загородных автострад.
Лампы низкого давления отличаются рядом особенностей. Во-первых, пары натрия весьма агрессивны по отношению к обычному стеклу. Из-за этого внутренняя колба обычно выполняется из боросиликатного стекла. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима колбы последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».
Разновидности
Рассматривая виды газоразрядных ламп, лучше разделить все модели на две большие группы: ГРЛ низкого давления и ГРЛ высокого давления. Каждая из групп обладает особенностями, предусматривающими применение элемента в конкретном случае.
Газоразрядные лампы низкого давления
Наиболее известным представителем ГРЛ низкого давления представляется люминесцентный осветительный прибор. Он представляет собой некоторую трубку, которая изнутри покрыта люминофором. Электроды получают импульс высокого напряжения и начинают разогреваться.
ГРЛ низкого давления
При разогреве между контактами образуется тлеющий заряд, воздействующий на газовую среду колбы. Возникает УФ излучение, которое воздействуя на люминофор, заставляет прибор светиться.
Разновидностью люминесцентных ламп (ЛЛ) представляются компактные приборы, которые маркируются аббревиатурой КЛЛ и ничем кроме размеров не отличаются от предыдущей модели. Во всех устройствах имеется регулирующий аппарат, встроенный непосредственно в цоколь.
Виды КЛЛ
Отдельно стоит рассмотреть индукционные осветительные приборы. Они не имеют никаких электродов во внутренней части, а ионизация происходит под действием высокочастотного магнитного поля. Обычно в колбе используется смесь аргона и паров ртути, воздействующих на люминофор.
Газоразрядные лампы высокого давления
Существуют приборы, давление внутри колбы у которых превышает атмосферное. Устройства называются лампами высокого давления.
Яркими представителями представляются дуговые ртутные лампы (ДРЛ). Не так давно именно они составляли большую часть всего уличного освещения. Теперь же их стараются заменять на металлогалогеновые и натриевые источники, обладающие более высокой эффективностью.
ГРЛ высокого давления
Если к прибору подключены йодиды, то он сразу же получает маркировку ДРИ. Прибор имеет горелку из кварцевого стекла, в которой расположены электроды. В качестве функционального вещества используется смесь из аргона, ртути и йодидов некоторых металлов. Горелка находится в разреженном пространстве и позволяет создавать сильное излучение, которого хватает для освещения больших площадей. ДРИ могут иметь мощность от 250 до 3500 Вт.
Еще одним примером ГРЛ высокого давления представляется дуговая натриевая трубчатая модель (ДНаТ). Она характеризуется очень высокой светоотдачей и относительно небольшим расходом энергии. Свет имеет ярко выраженный золотистый оттенок. К недостаткам прибора можно отнести долгое выключение, которое может занимать около 10 минут.
Натриевая лампа ДНаТ
Если нужно белое освещение, максимально приближенное к дневному, лучше подбирать дуговые ксеноновые устройства. Максимальная мощность может достигать показателя в 18 кВт. Вольфрамовые электроды легированы торием и способны выдерживать высокие нагрузки. Иногда может применяться сапфировое стекло, если необходимо получить на выходе УФ излучение.
Металлогалогенные газоразрядные лампы (МГЛ) – компактные, надежные и мощные источники освещения, представляющие собой помещенную в вакуумную колбу горелку. Эта горелка может быть сделана из кварцевого стекла или обычной керамики. Внутренняя часть заполняется парами ртути и галогенидами металлов. Излучение наблюдается при появлении плазмы между электродами во время подачи питания. Мощность приборов в некоторых случаях может достигать 3.5 кВт. Рассчитаны приборы на 12 000 часов работы. На включение до полной мощности потребуется примерно 10 минут.
Газоразрядная трубка
Газоразрядные трубки, заполненные гелием или неоном, используются для декоративных целей и для рекламных надписей.
Газоразрядная трубка с гелием помещается в штатив, расположенный на рельсе прибора, по метке на рельсе и включается в сеть через блок питания.
Газоразрядные трубки являются источниками шума в диапазоне сверхвысоких частот — от 500 МГц до 12 ГГц. Под влиянием приложенного электрического поля они движутся с высокой скоростью, поэтому мощность шума достигает относительно больших значений. Значение Те достигает нескольких десятков тысяч Кельвинов.
Газоразрядная трубка заполнена гелием.
Схема гелиево-неонового лазера. |
Газоразрядная трубка имеет выходное окно в виде прозрачных пластин, расположенных под углом Брюстера 0, удовлетворяющим условию tg 0 п, где п — показатель преломления пластины. Луч света, поляризованный в плоскости, перпендикулярной к плоскости падения, не отражается и проходит через окно практически без потери интенсивности, в то время как луч, поляризованный в плоскости падения, отражается частично.
Газоразрядные трубки применяются также для рекламных и декоративных целей, для чего им придают очертания различных фигур и букв.
Газоразрядные трубки, заполненные гелием или неоном, используются для декоративных целей и для рекламных надписей.
Газоразрядные трубки выполняются либо водно-водного, либо коаксиального типа. Газоразрядные трубки наполнены инертным газом под давлением и электрически согласованы с волноводом или коаксиальной линией.
Газоразрядная трубка / / дает световые импульсы продолжительностью 50 мксек, повторяющиеся 100 раз в секунду. Свет проходит через диафрагму Дф, далее, через нс-зачерненные места диска Д, диафрагму Дфг и, наконец, попадает на ряд фотоэлементов ФЭ. На рис. 11.5 не показаны поперечные перегородки, которые обеспечивают попадание на каждый фотоэлемент только светового потока от просматриваемого им кольца диска.
Газоразрядные трубки могут возбуждаться переменным или постоянным напряжением; причем напряжение зажигания зависит от давления газа или пара в трубке и от расстояния между электродами. При очень малых давлениях потенциал зажигания достигает больших значений.
Газоразрядные трубки выполняются либо волно-водного, либо коаксиального типа. Газоразрядные трубки наполнены инертным газом под давлением и электрически согласованы с волноводом или коаксиальной линией.
Газоразрядная трубка световой накачки, обвивающая рабочий объем лазера, создает мощный поток фотонов, возбуждающих атомы рабочего вещества. Заметим, что никакое накопление возбужденных атомов во втором возбужденном состоянии невозможно. То самое излучение, которое переводит атомы из основного в возбужденное состояние ( состояние 3 на рис. 6.4), вызывает индуцированное излучение этих атомов и их ускоренный переход в основное состояние. В процессе возбуждения часть атомов, однако, высвечивается из второго в первое возбужденное состояние и там накапливается.
Излучение абсолютно черного тела при различных температурах. Вертикальными штриховыми линиями на обоих графиках указаны границы видимой области. |
Газоразрядные трубки низкого давления в качестве источников излучения используются в ограниченных целях. В атом-но-абсорбционной спектроскопии для определения металлов, например хрома, который переведен в парообразное состояние, желательно в качестве источника использовать газоразрядную трубку низкого давления, содержащую хром; резонансное излучение источника избирательно поглощается тем же элементом пробы. В этих целях часто применяется чашеобразный катод, изготовленный из определяемого металла или покрытый им ( лампа с полым катодом) ( см. гл.
Технические характеристики некоторых моделей
Модель | Р, Вт | U на лампе, В | Световой поток, лм | Цоколь | Длина | Диаметр | Изготовитель |
---|---|---|---|---|---|---|---|
ДНаТ-50ц | 50 | 100 | 3700 | Е27 | 165 | 42 | Россия |
ДНаТ-70ц | 70 | 100 | 6000 | Е27 | 165 | 42 | Россия |
ДНаТ-100эл | 100 | 120 | 8000 | Е27 | 175 | 76 | Россия |
ДНаТ-100ц | 100 | 120 | 9800 | Е27 | 165 | 42 | Россия |
ДНаТ-100ц | 100 | 120 | 9000 | Е40 | 211 | 42 | Россия |
ДНаТ-150 | 150 | 120 | 15000 | Е40 | 211 | 48 | Россия |
ДНаТ-250 | 250 | 120 | 26000 | Е40 | 250 | 48 | Россия |
ДНаТ-400 | 400 | 120 | 45000 | Е40 | 278 | 48 | Россия |
ДНаТ-1000 | 1000 | 120 | 130000 | Е40 | 390 | 66 | Россия |
NAV -Т 100W | 100 | 120 | 9000 | Е40 | 211 | 46 | Osram |
NAV-Т 70W | 70 | 100 | 5900 | Е27 | 156 | 37 | Osram |
NAV -Т 150W | 150 | 120 | 14500 | Е40 | 211 | 46 | Osram |
NAV-Т 250W | 250 | 120 | 27000 | Е40 | 257 | 46 | Osram |
NAV -Т 400W | 400 | 120 | 48000 | Е40 | 258 | 46 | Osram |
LU70W/90/T12/E27 | 70 | 100 | 6000 | Е27 | 156 | 37 | GЕ |
LU150W/100/E40 | 150 | 120 | 15000 | Е40 | 211 | 46 | GЕ |
LU250W/T/E40 | 250 | 120 | 27500 | Е40 | 260 | 46 | GЕ |
LU400W/T/E40 | 400 | 120 | 50000 | Е40 | 283 | 46 | GЕ |
SON-T Pro 70W | 70 | 90 | 6000 | Е27 | 156 | 38 | Philips |
SON-T Pro 100W | 100 | 100 | 10500 | Е40 | 211 | 47 | Philips |
SON-T Pro 150W | 150 | 100 | 15000 | Е40 | 211 | 47 | Philips |
SON-T Pro 250W | 250 | 100 | 28000 | Е40 | 257 | 47 | Philips |
SON-H Pro 220W | 250 | 100 | 20000 | Е40 | 257 | 47 | Philips |
SON-H Pro 350W | 400 | 117 | 34000 | Е40 | 290 | 122 | Philips |
SON-Т Pro 400W | 400 | 100 | 48000 | Е40 | 283 | 47 | Philips |
SON-T PIA Plus 50W | 50 | 88 | 4400 | Е27 | 156 | 32 | Philips |
Виды и принцип работы современных ламп накаливания
Принцип работы лампы накаливания основан на нагреве металлической спирали, находящейся в вакууме (лампы мощностью до 25Вт) или газе аргон или аргон+азот (средней мощности и высокомощные лампы) в герметично запаянной стеклянной колбе.
При прохождении через спираль, ток разогревает ее до температуры, равной впредь до 3000 градусов по Цельсию, вместе с этим происходит и излучение света, инфракрасных лучей.
Сама спираль выполнена из особо прочного и весьма тугоплавкого металла – вольфрама, а степень яркости освещения прямо пропорционально зависит от температуры нагрева; кроме того, газовая среда, в которой находится спираль, может содержать в себе частицы галогенов – соединений 17-ой гр. Таб. Менделеева (F, Cl, Br, I).
Современные лампы накаливания производятся из стекла с металлическим плафоном, имеющим резьбу, по средствам которой происходит фиксация в патроне, но имеются разновидности с контактно-зажимными и штыревыми типами соединений.
Виды ламп накаливания могут иметь четыре модификации, четыре условных обозначения, указывающих на тип спирали и окружающей ее среды в лампе накаливания: В (вакуумная), Б (биспиральная с аргоновым напылением), БО (биспиральная с аргоновым наполнением в опаловой колбе), Г (моноспиральная с аргоновым напылением).
Отдельным видом наиболее современных ламп накаливания являются галогенные лампы накаливания, отличие которых от вышеописанных обусловлено содержанием галогенных частиц в газовой среде лампы накаливания (частиц йода, хлора, брома), которые вступают в реакцию с испарившемся металлом с поверхности спирали.
После этого процесса металл возвращается на поверхность спирали по средствам температурного разложения получившегося соединения. Таким образом, они имеют больший КПД, срок годности и другие характеристики.
Что касается бытового назначения ламп накаливания, то они являются лампы общего назначения и обозначаются аббревиатурой ЛОН.
Основные характеристики
При создании любой системы освещения внимание в первую очередь обращается на качество свечения. Для жилого дома важны такие параметры как прочность корпуса, мощность, уровень нагрева, безопасность, простота замены, цена и срок эксплуатации
Светоотдача и коэффициент цветопередачи
Светоотдача измеряется в люменах на ватт и позволяет определить, какой объем электроэнергии преобразуется в свечение. Источники различного типа с одинаковой мощностью могут разительно различаться по светоотдаче.
Кроме того, при выборе необходимо учитывать, но на этот показатель большое влияние оказывает конструкция светильника: форма рассеивателя, наличие отражателей. Чем выше светоотдача, тем меньше электроэнергии тратится на освещение. На данный момент по этому параметру лидируют светодиодные источники.
Цветопередача – параметр, определяющий соответствие свечения лампочки естественному свету. Чтобы человек мог чувствовать себя комфортно, значение коэффициента должно быть в пределах 80-100 Rа.
При покупке можно ориентироваться на эту таблицу:
Место установки | Коэффициент цветопередачи (Rа) |
Склады, производственные помещения, дежурное освещение | 50 |
Общие и промышленные помещения | 50-70 |
Школы, офисы, медицинские учреждения, магазины | 70-80 |
Жилые помещения | 80-90 |
Рабочие места, для которых передача цвета решающая для качественного выполнения обязанностей | 90-100 |
Цветовая температура
Температура цвета – параметр, определяющий естественность свечения. Измеряется как в Кельвинах (К).
Лампочка может излучать 3 вида свечения:
- белое теплое (2700 — 3500K);
- белое естественное (3500 — 5000K);
- белое холодное (5000 — 7000K).
Электронный балласт
Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.
Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.
Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.
Подключение осуществляется следующим образом:
- Первый и второй контакт соединяют с парой ламповых контактов.
- Третий и четвертый контакты направляют на оставшуюся пару.
- На вход подают электропитание.
Использование умножителей напряжения
Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.
В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.
Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.
Подключение без стартера
Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.
На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.
Последовательное подключение двух лампочек
В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.
Для проведения электромонтажных работ понадобятся такие детали:
- индукционный дроссель;
- стартеры (2 единицы);
- люминесцентные лампочки.
Подключение выполняется в следующем порядке:
- Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
- Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
- К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.