Измерение расхода жидкости: приборы и методы

Содержание:

Возможные проблемы при использовании приборов учета стоков с погружными датчиками

Наиболее серьезной проблемой при использовании погружных датчиков является возможность потери ими работоспособности в результате загрязнения при работе в грязном канализационном стоке, либо разрушения при наличии в потоке перекатывающихся камней и других тяжелых предметов. При этом Водоканалы России особенно серьезно относятся к этой проблеме, потому что считают канализационные трубы в нашей стране самыми грязными. Но это не совсем так. Погружные датчики используются во всем мире, не только в хорошо ухоженных трубах Германии и Швейцарии, но и в Индии и в других странах, где канализация ничуть не чище отечественной.

Применяемые ультразвуковые датчики специально рассчитаны на тяжелые условия работы и не теряют работы при заиливании, так как мокрый ил хорошо пропускает ультразвука.

При покрытии датчиков слоем тряпок или материалом, непрозрачным для ультразвука, расходомеры ведущих производителей не дают неверных показаний, а сигнализируют об ошибке и необходимости прочистки. Для уменьшения вероятности засорения датчики обычно устанавливают не внизу (не на 6 часов), а с некоторым смещением (например, на 4 часа или 5 часов).

Применяют также установку на небольшом возвышении (на специальной подставке) и еще целый ряд методов для минимизации проблем, создаваемых грязью.

Для защиты от перекатывающихся камней и других твердых предметов, которые могут разбить корпус датчика, используют металлическую защиту специальной формы.

Еще одной проблемной задачей является измерение в потоках, имеющих в некоторые моменты времени низкий уровень. Это приводит к тому, что вода не покрывает датчик и не позволяет производить измерение скорости. Выше уже описывалась возможность перевода безнапорного потока в напорный за счет использования загнутой вверх трубы. Для поднятия уровня могут также использоваться небольшие плотины. При этом поток остается безнапорным, но уровень повышается.

Способ монтажа

Приняв во внимание характеристики измеряемой среды, нужно также обратить внимание на условия монтажа расходомера. Можно выделить 3 основных способа монтажа

  • Врезные расходомеры. Подобные приборы представляют собой уже готовую небольшую секцию трубопровода с установленным на ней расходомером. Для установки подобного прибора необходимо либо удалить участок трубы и установить расходомер на это место, либо производить монтаж на байпасном трубопроводе. Плюсом врезных расходомеров является их относительно невысокая стоимость (однако только если речь идет о небольших диаметрах трубопровода). Минусом же является неудобство монтажа – врезка требует определенных усилий, отнимает много времени и, разумеется, требует остановки производства. Кроме этого врезные расходомеры не подходят для использования на трубопроводах больших диаметров. К данному типу расходомеров относится, например, прибор VA 420.
  • Погружные расходомеры. Для установки данных приборов не нужно вырезать целую секцию трубопровода или устанавливать байпасное соединение. Установка производится путем сверления небольшого отверстия в стенке трубопровода, помещения в него штанги расходомера и закрепления прибора в таком положении. Подробнее об установке погружного расходомера можно прочесть в соответствующей статье. Плюсами данного типа приборов является простота установки и относительно невысокая стоимость. Кроме этого данные приборы легко можно использовать на трубопроводах больших диаметров. К примеру, длина штанги у некоторых исполнений расходомера SS 20.600 позволяет использовать его в трубопроводах диаметром до 2 метров. Недостатком же является то, что данные приборы не очень удобно использовать на крайне малых трубопроводах – при значении диаметра 1/2» и менее предпочтительнее использовать врезные расходомеры.

Накладные расходомеры. Принцип работы данных расходомеров не требует прямого доступа к измеряемой среде – измерение производится через стенку трубопровода обычно ультразвуковым методом. Монтаж данных расходомеров является наиболее удобным и простым, но их стоимость обычно в несколько раз выше, чем у погружных и врезных приборов, поэтому использовать их имеет смысл только в случае, если нет никакой возможности нарушать целостность трубопровода.

Ориентировочный расход

Все расходомеры имеют тот или иной диапазон измеряемого расхода. При превышении пределов этого диапазона приборы перестают выдавать достоверные показания, поэтому при выборе прибора следует учитывать максимально возможный расход на заданном участке.

В случае тепловых расходомеров ограничения измерительных диапазонов проводятся не по объему проходящего воздуха (так как для одного и того же расходомера максимально допустимые значения объёмного расхода будут различаться в зависимости от диаметра трубопровода), а по скорости потока, приведенной к нормальным условиям.

Так максимальная допустимая скорость для расходомера SS 20.260– 50 м/с, для SS 20.261 – 90 м/с, для VA 400– 220 м/с. При этом вовсе не обязательно использовать расходомер с наибольшим скоростным диапазоном, так как чем больше диапазон, тем больше погрешность измерения (а часто – и цена)

Поэтому очень важно знать максимально возможную скорость потока в конкретном случае

Скорость потока зависит, во-первых, от объемов проходящего газа, то есть, собственно, от расхода и, во-вторых, от внутреннего диаметра трубопровода. Чем больше расход и чем меньше диаметр – тем выше скорость. О том, почему для выбора расходомера необходимо знать диаметр участка, на котором его будут использовать, мы подробнее расскажем далее.

Ориентировочный же расход, в случае, если речь идет о сжатом воздухе, можно узнать из технической документации компрессора. Методы расчета скорости на основе диаметра и расхода обычно приводятся в руководстве по использованию расходомера. К примеру, в данной таблице приведены максимальные значения расхода для различных версий расходомера VA 400:

Виды расходомеров сточных вод: уровнемеры, радарные расходомеры, доплеровские, кросс-корреляционные, электромагнитные, время-импульсные, рычажные и другие расходомеры.

В настоящее время существует несколько методов измерения расхода сточных вод в безнапорных трубопроводах и большое количество различных типов оборудования для решения этой задачи. К таким методам можно отнести:

  1.  Использование в качестве расходомеров уровнемеров, установленных на лотках Паршаля или Вентури, либо непосредственно над каналом или в колодце трубопровода. При этом средняя скорость не измеряется вообще, а предполагается, что это величина постоянная и расход зависит только от уровня.
  2. Радарные бесконтактные расходомеры, измеряющие уровень и скорость поверхностного стока. Средняя скорость потока определяется путем умножения скорости поверхностного стока на постоянный коэффициент.
  3. Погружные ультразвуковые расходомеры на основе метода Доплера, измеряющие скорость в различных точках потока и вычисляющие среднюю скорость на основе дополнительно вводимых данных о шероховатости стенок трубопровода и т.д.
  4. Системы, обеспечивающие перевод безнапорного режима работы трубопровода в напорный. При этом на самотечную трубу устанавливается секция, загнутая вверх, обеспечивающая заполнение трубы 100%, после чего измерение расхода в этой трубе обеспечивается ультразвуковыми или полнопроходными электромагнитными приборами учета, предназначенными для напорных трубопроводов.
  5. Погружные ультразвуковые кросс-кореляционные расходомеры, измеряющие скорость в потоке по слоям и вычисляющие среднее ее значение на основе полученных данных о распределении скоростей по всему сечению потока.
  6. Время-импульсные расходомеры (метод еще называют транзит-тайм или время переноса) представляют собой два датчика, расположенных на противоположных стенках трубы или канала, каждый из которых является и приемником и излучателем. Датчики направлены друг на друга и посылают узконаправленный ультразвуковой сигнал один в направлении другого. Ось, проходящая через датчики расположено под углом от 45 до 70 градусов к оси трубопровода. Двигаясь с потоком по течению ультразвуковой луч проходит расстояние от одного датчика до другого быстрее, чем против течения. Исходя из этого определяется скорость течения.

Существуют и некоторые другие типы счетчиков сточных вод, но они мало распространены из-за их очевидных недостатков при работе в стоках.
Это, например, электромагнитные точечные расходомеры, датчики которых производят измерение в локализованной области потока. Их недостатком является то, что электромагнитные точечные датчики способны продолжительно работать только в относительно чистой воде.

Также существуют устройства, определяющие скорость течения на основании измерения угла отклонения штыря (рычага), погруженного в поток. Этот метод достаточно прост, но любая грязь на поверхности течения, особенно в хозбытовых фекальных стоках (волосы, тряпки и т.д.), незамедлительно нарушает показания.

Как правильно заказать измеритель или регулятор расхода газа (РРГ)

Для заказа большинства моделей вам необходимо учесть:Верхний предел измерения по азоту в ст.см3/мин (sccm) или в ст.л/мин (slm) из предлагаемого ряда.

Диапазон рабочих температурСтандартный диапазон: 15 — 45°C. Имеются модели, работающие при повышенных температурах. При заказе уточните необходимый вам диапазон рабочих температур.

Выходной сигналВы можете выбрать прибор с аналоговым выходным сигналом 0..5 В, либо прибор с дополнительным цифровым интерфейсом RS 485, Device Net или Profitbus, USB.

ШтуцерыВы можете выбрать Swagelok 1/4″, Cajon 4 VCR, Cajon 4 VCO, а для моделей на большие расходы — Swagelok 1/2″, Cajon 8 VCR, Cajon 8 VCO. Подумайте, есть ли у вас подходящая арматура для этих штуцеров. Вы можете заказать ее вместе с нашим оборудованием.

УплотненияКомпания MKS Instruments предлагает несколько видов уплотнений для газов различной степени агрессивности: Viton, Neoprene, Buna-N, Kalrez. Существуют полностью металлические приборы. Если вы не уверены в своем выборе, сообщите нам, с какими газами вы работаете, и мы поможем вам сделать правильный выбор.

КабелиПри покупке регуляторов и расходомеров необходимо предусмотреть закупку соединительных кабелей между этими датчиками и их электронными блоками. Компания «MKS» предлагает кабели стандартной длины 3 м. Если вам необходима другая длина кабеля, укажите ее в вашем заказе.

МонтажКомпания «MKS Instruments» рекомендует монтировать регуляторы и расходомеры в горизонтальном положении (горизонтальная линия протока).При использовании приборов на газовых линиях, питающихся напрямую от баллона с газом, или при использовании сомнительных по чистоте баллонов (даже с установленным фильтром грубой очистки) рекомендуется установить перед прибором защитный фильтр (ячейка 1..10 мкм) для предотвращения его закупоривания.

Выбор верхнего предела в зависимости от рода газаВсе приведенные ниже характеристики расходомеров и регуляторов расхода газа даны для приборов, калиброванных по азоту. При работе с иными газами для правильного выбора ВП прибора необходимо учесть коэффициент коррекции рода газа (ККРГ).

Пример 1. Необходимо регулировать массовый расход газа СО2 в диапазоне до 100 ст.см3/мин.Определяем ВП в азотном эквиваленте, используя коэффициент коррекции рода газа (ККРГ), который для СОравен 0,74.100 (ст.см3/мин) /0,74 = 135 ст.см3/мин в азотном эквиваленте.Наиболее близкий сверху ВП для регулятора 1259 будет 200 ст.см3/мин.Пример 2. Дан расходомер с ВП, равным 1000 ст.см3/мин, измеряющий расход азота.Каков будет максимальный измеряемый расход (ВП) по аргону?ККРГ для аргона К=1,45.1000 ст.см3/мин х 1,45= 1450 ст.см3/мин по аргону.

ПРИМЕЧАНИЕ: если ваш рабочий газ имеет плотность большую, чем азот (1,25 кг/м3 при 0°C), необходимо дополнительно уточнить у представителей компании рекомендации по выбору ВП.

Таблица значений коэффициентов коррекции рода газа (ККРГ) — Скачать PDF или посмотреть на сайте MKS:http://www.mksinst.com/docs/ur/MFCGasCorrection.aspx

В компании «БЛМ Синержи» вы можете заказать расходомер потока газа с доставкой в любой регион России.

Причины дефектов в расходомере воздуха

Расходомер воздуха является износостойким компонентом в машине. Но ничто не вечно в нашем мире. Естественно, чем больше пробег машины, тем больше изнашивается запчастей. Это касается и датчика массового расхода воздуха. Например, по мере увеличения пробега автомобиля с каждым разом ДМРВ посылает блоку управления двигателем все больше неверных значений.

И рано или поздно ДМРВ выйдет из строя. К сожалению, на первых порах вы можете не заметить неправильную работу мотора. Но по мере увеличения износа датчика вы начнете замечать, что автомобиль ведет себя неправильно. Во-первых, первым признаком неисправности ДМРВ является заметное увеличение расхода топлива. 

Но не всегда выход из строя датчика расхода воздуха связан с большим пробегом машины. Иногда расходомер воздуха может выйти из строя очень рано.

Например, если вы часто ездите быстро в сильный дождь, то вода может проходить через воздушный фильтр попадая на датчик массового расхода воздуха.

В итоге, вода может в короткий срок привести к дефекту датчика. Кроме того, датчик может быстро выйти из строя из-за негерметичности системы впуска или из-за несвоевременной замены воздушного фильтра. Дело в том, что если на датчик будет попадать песок и другая грязь из фильтра или с улицы, то он не сможет долго работать исправно. 

Механические счётчики расхода

Бытовые объёмные счётчики газа

Скоростной счётчик — турбинка

Скоростные счётчики

Скоростные счётчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а следовательно, и расходу.

Объёмные счётчики

Поступающая в прибор жидкость или газ измеряется отдельными, равными по объёму дозами, которые затем суммируются. Счётчики газа на этом принципе часто встречаются в быту.

Классификация объёмных счетчиков
  • В зависимости от конструктивных особенностей рабочего органа: поршневые, шестеренные.
  • В зависимости от вида движения рабочего органа: поступательного движения, вращательно-ротационного движения, прецессионного, планетарного движения.

В зависимости и от конструкции и от вида движения рабочего органа классифицируются на:

  • поршневые (кольцевые) с планетарным движением кольцевого поршня;
  • шестеренные (круглые) с ротационным вращением круглых шестерен;
  • шестеренные (овальные) с ротационным вращением овальных шестерен;
  • лопастные (камерные) с ротационным вращением лопастей, выполненных в виде камер;
  • лопастные (пластинчатые) с ротационным вращением пластинчатых лопастей.

Ёмкость и секундомер

Возможно, самый простой способ измерить расход — это использовать некоторую ёмкость и секундомер. Поток жидкости направляется в некоторую ёмкость, и по секундомеру засекается время заполнения этой ёмкости. Зная объём ёмкости и поделив его на время заполнения, можно узнать расход жидкости. Этот способ подразумевает прерывание нормального течения потока, однако может давать непревзойдённую точность измерения. Широко используется в тестовых и поверочных лабораториях.

Ролико-лопастные расходомеры

Область применения ролико-лопастных расходомеров очень широка: измерение расходов на испытательных стендах, в гидроприводах станков и технологического оборудования, на стационарных и передвижных бензо- и маслозаправочных станциях, в топливных системах карбюраторных и дизельных двигателей автомобилей, тракторов, строительно-дорожных, сельскохозяйственных, лесозаготовительных машин, тепловозов и судов, как дозаторы при заливке танкеров, ж/д цистерн, резервуаров.

Расходомер оснащен встроенным электронным датчиком и программируемым микропроцессорным прибором с жидкокристаллическим дисплеем. Электроника расходомера имеет автономное питание на 3 — 5 лет и герметизированный выход на вторичный электронный прибор или компьютер, управляющий механизмами дозирования. Для метрологического применения или при необходимости проведения высокоточных измерений в технологических процессах, расходомер оснащен датчиком с высокой разрешающей способностью (до долей см3).

Шестерёнчатые расходомеры

Шестерёнчатый расходомер

Впервые расходомер с овальными шестернями был изобретен компанией Bopp & Reuther (Германия) в 1932 году.

Измеряющий элемент состоит из двух шестерёнок овальной формы. Протекающая жидкость вращает данные шестерёнки. При каждом обороте пары овальных колес через прибор проходит строго определённое количество жидкости. Считывая количество оборотов, можно точно определить, какой объём жидкости протекает через прибор.

Данные расходомеры отличаются высокой точностью, надёжностью и простотой, что позволяет их использовать для жидкостей с высокой температурой и под большим давлением. Отличительной особенностью расходомеров с овальными шестернями является возможность использования для жидкостей с высокой вязкостью (мазут, битум).

Расходомеры на базе объёмных гидромашин

В системах объёмного гидропривода для измерения объёмного расхода рабочей жидкости применяют объёмные гидромашины (как правило — шестерённые или аксиально-плунжерные гидромашины).

Объёмная гидромашина в этом случае работает как гидродвигатель, но без нагрузки на валу. Тогда объёмный расход через гидромашину можно определить по формуле:

Q=q⋅n,{\displaystyle Q=q_{0}\cdot n,}

где

  • Q{\displaystyle Q} — объёмный расход,
  • q{\displaystyle q_{0}} — рабочий объём гидромашины (определяется по паспорту гидромашины),
  • n{\displaystyle n} — частота вращения выходного вала гидромашины, которую можно измерить тахометром.

Заметим, что объёмная гидромашина пропускает через себя весь расход жидкости, что для объёмного гидропривода не представляет сложности ввиду малых расходов.

Расходомеры переменного перепада давления (на основе сужающих устройств).

Гиперфлоу-3МП

Использование сужающих устройств для измерения расхода и количества газа являлось до недавнего времени самым используемым. Однако малый диапазон измерения расхода (1:3) с приемлемой для коммерческого учета газа погрешностью ±1,5% ,а также разработка турбинных и ротационных счетчиков газа несколько ослабило позиции расходомеров на основе сужающих устройств.

В последнее десятилетие за счет разработки новых датчиков давления с большими диапазонами измерения и Развития микропроцессорной техники появились и успешно внедряются несколько комплексов на базе сужающих устройств, такие как Гиперфлоу-3МП, Суперфлоу-2, массовый расходомер модели 3095 MV . Для трубопроводов большого диаметра, более 300-400 мм. данный метод измерения является вполне конкурентным.

Суперфлоу -2

Во всех вышеперечисленных расходомерах-счетчиках измеряется давление и температура газа, перепад давления на сужающем устройстве (как правило, стандартизованном: диафрогмы, сопла, трубы Вентури, но применяются и не стандартные средства измерения ) и вычисляется объемный и массовый расходы газа и количество пройденного газа приведенного к нормальным условиям. При наличии сетевого питания расходомер может иметь токовый сигнал, при автономном питании передача сигнала осуществляется через интерфейс RS -232 или RS -485.

Как правило, выпускаются счетчики газа, т.е. приборы измеряющие количества прошедшего газа нарастающим итогом. Мгновенные значения расходов не индицируются. Исключением являются ЛГ-к-Ех, ТРСГ, ДРОТ, ВСРГ-1, СВГ.М, ГАЗ-001, в которых измеряется расход, а количество прошедшего газа определяется интегрированием по времени.

Кросс-корреляционные ультразвуковые счетчики

Такие расходомеры работают по методу кросс-корреляции ультразвукового сигнала. Эта методика основана на принципе построения скоростей по различным уровням потока, счетчик дает возможность строить реальную диаграмму распределения скоростей в потоке. Также выполняется замер уровня потока.

С водомерами используются ультразвуковые трубные и клиновидные датчики скорости, устанавливаемые в потоке, уровень жидкости определяется при помощи надводных и подводных датчиков. Возможно исполнение комбинированных датчиков скорости и уровня.

Счетчики используются в напорных и самотечных, открытых и закрытых системах. Это точный метод измерения, дающий достоверные результаты для потоков различной степени загрязненности, в том числе он эффективен в неоднородных средах. Расходомеры используют в технологических трубопроводах, на очистных сооружениях, в реках и водоемах и др. В крупных каналах можно устанавливать несколько датчиков по всей ширине для получения более точных результатов.

Виды и типы расходомеров воды

Наиболее простым типом расходомеров являются тахометрические водосчетчики, в которых вращающаяся за счет движения воды крыльчатка передает вращение на счетчик. Такие устройства в качестве стационарных приборов учета работают только на водопроводах малого диаметра. Аналогичные переносные «вертушки» широко используются для временных точечных измерений в самотечных каналах и реках.

Для решения задач измерения объема поданной воды на городских водопроводах широко используют полнопроходные электромагнитные расходомеры жидкости. Они отличаются высокой точностью измерений (погрешность может составлять +0,5% или даже +0,3%). Это наиболее распространенные приборы для наружных трубопроводов водоснабжения малого диаметра. Однако для труб большого диаметра применение электромагнитных водомеров усложняется их большим весом и габаритами, а также высокой стоимостью. Также весьма спорным является вопрос «беспроливных», «имитационных» методов периодической поверки таких устройств большого диаметра, введенных из-за отсутствия в недавнем прошлом в России соответствующих проливных стендов, а также из-за огромных затрат на демонтаж и транспортировку подобного оборудования весом сотни килограммов для периодической поверки на проливном стенде. Полнопроходные электромагнитные счетчики используют также на сетях напорной канализации. Есть попытки установки оборудования такого типа на безнапорных стоках с добавлением уровнемера, но они не получили распространения из-за высокой стоимости.

Широко распространенным типом приборов для напорных и безнапорных трубопроводов различного диаметра являются ультразвуковые расходомеры. В них могут быть использованы различные методы измерений: время-импульсный, кросс-корреляционный и метод Доплера.

Для работы в больших самотечных каналах иногда используют радарные или лазерные бесконтактные расходомеры. Эти устройства определяют скорость на поверхности потока радарным датчиком скорости, а уровень потока — ультразвуковым или радарным уровнемером.

Для указанной задачи используют также уровнемеры, на основе показаний которых определяется объемный расход, вычисляемый по формуле Маннинга (или Павловского) как функция уклона и сопротивления (шероховатости стенок). Этот метод также не учитывает распределение скоростей в сечении потока. Кроме того, при возникновении подпоров (засоров ниже по течению) ошибка этого метода становится еще выше.

В напорных трубопроводах используют также штанговые электромагнитные счетчики на воду, представляющие собой длинную металлическую штангу с электромагнитным датчиком на конце, вставляемые в трубопровод через шаровой кран и обеспечивающие измерение скорости потока в одной точке (как правило, в центре трубы).

Признаки и причины неисправностей

При частичном выходе расходомера из строя водитель заметить одну или несколько из перечисленных ниже ситуаций. В частности:

  • не заводится двигатель;
  • нестабильная работа (плавающие обороты) мотора в режиме холостого хода, вплоть до его отключения;
  • снижаются динамические характеристики машины (при разгоне двигатель «проваливается» при нажатии на педаль акселератора);
  • значительный перерасход топлива;
  • на приборной доске светится контрольная лампа Check Engine.

Перечисленные признаки могут быть следствием и других неисправностей отдельных элементов двигателя, однако среди прочего необходимо проверить и работу расходомера воздуха. Теперь рассмотрим причины, по которым возникают описанные неисправности:

Восстановление расходомера

  • Естественное старение и выход датчика из строя. Особенно это актуально для относительно старых машин, у которых установлен оригинальный расходомер.
  • Перегрузка двигателя. Вследствии перегрева датчика и его отдельных элементов он может выдавать неверные данные для ЭБУ. Это возникает по причине того, что при значительном нагреве металла изменяется его электрическое сопротивление, а соответственно, и расчетные данные количества проходимого через устройство воздуха.
  • Механическое повреждение расходомера. Оно может быть результатом различных действий. Например, повреждением при замене воздушного фильтра или других близко расположенных к нему узлов, нарушение контактов при установке и так далее.
  • Попадание влаги внутрь корпуса. Причина достаточно редкая, но она может иметь место в случае, если в моторный отсек по каким-либо причинам попало большое количество воды. Из-за этого может произойти короткое замыкание в цепи датчика.

Как правило, расходомер не подлежит ремонту (за исключением механических образцов), и при его выходе из строя необходимо выполнить замену. Благо, стоит устройство недорого, а процесс демонтажа и установки не занимают много сил и времени. Однако перед тем как выполнить замену, необходимо провести диагностику датчика и попытаться почистить чувствительный элемент средством для очистки карбюраторов.

Снятие данных. Наличие дисплея и тип выходного сигнала

Наконец, следует определиться с тем, каким образом вы хотите получать результаты измерений. Большинство расходомеров используют аналоговый или цифровой выходной сигнал для передачи информации о результатах измерений. Если на предприятии имеется собственная автоматическая система управления технологическим процессом (АСУ ТП), в которую можно завести данные выходные сигналы, то аналогового или цифрового сигнала, скорее всего, будет достаточно. Однако, если готовой системы управления нет, может возникнуть необходимость снимать данные с дисплея. В некоторых расходомерах (например, у VA400) дисплей может быть уже встроен или доступен в качестве опции. Для других приборов нужно приобретать отдельный индикатор и подавать на него выходной сигнал датчика.

Данные, выводимые на дисплей, обычно ограничиваются текущим и накопленным расходом. В некоторых случаях может стоять задача регистрировать данные за разные промежутки времени и обрабатывать их, формируя отчеты и представляя информацию в табличном или графическом виде. Если на предприятии нет готовой системы управления, которая могла бы выполнять эти функции, то имеет смысл приобрести прибор с встроенным регистратором данных и идущим в комплекте программным обеспечением, позволяющим быстро и удобно проводить обработку полученных данных. Примером такого прибора может служить DS 400.

В случае, если расходомер не имеет встроенного дисплея и для получения данных требуется выходной сигнал, следует определиться с типом этого сигнала. К наиболее распространенным аналоговым сигналам относятся сигналы 4…20 мА и 0…10 В. Некоторые расходомеры, такие как SS 20.600 могут формировать любой из этих сигналов в зависимости от значения подключенного сопротивления. В некоторых случаях может потребоваться цифровой выходной сигнал, например, использующий протоколы Modbus или Profibus.

Перечисленных выше параметров должно быть достаточно для подбора расходомера. В то же время, если вы хотите иметь более полное представление о различных типах расходомеров, а также преимуществах и недостатках каждого типа, можете также прочесть статьи о классификации датчиков расхода по принципу измерения.

Время-импульсные ультразвуковые счетчики

Время-импульсный метод (или, по-другому, фазового сдвига) основан на измерении времени прохода сигнала против движения потока и по направлению перемещения жидкости. Для преобразования ультразвукового сигнала на трубопроводе устанавливают два или четыре смещенных вдоль движения воды пьезоэлемента. Как правило, применяются дисковые элементы, реже – кольцевые (на малых диаметрах).

Пьезоэлементы могут устанавливаться внутри потока (на внутренних стенках трубы или канала) или снаружи трубопровода (в этом случае сигнал проходит через наружную стенку). В зависимости от применяемых датчиков счётчики могут устанавливаться в самотечных системах (как открытых, так и закрытых), а также в полностью закрытых трубопроводах с избыточным давлением среды. Различают такие виды датчиков скорости:

  • трубные – врезаются в водопровод с внешней стороны. Могут применяться в напорной и безнапорной среде;
  • клиновидные – устанавливаются на дне или внутренней стенке трубы. Как правило, используются в безнапорных каналах либо в трубопроводах больших диаметров, если установка и обслуживание датчика снаружи неудобна;
  • сферические или полусферические – монтируются на наклонных стенках открытых трапециевидных каналов;
  • штанговые – имеют вид трубок, устанавливаются на вертикальных стенках каналов;
  • накладные – бесконтактные датчики, ставятся на внешнюю поверхность трубопровода.

В зависимости от способа установки датчиков различают контактные и бесконтактные устройства. Преимущество бесконтактных переносных расходомеров в возможности устанавливать их на трубопроводы без нарушения целостности. Они достаточно редко устанавливаются стационарно, чаще используются для поверочных замеров в разных точках.

Время-импульсные расходомеры пригодны для нахождения расхода чистой воды или немного загрязненной (с незначительным включением взвешенных частиц). Их применяют в водоснабжении и водоотведении, в охлаждающих контурах, в ирригационных схемах орошения, на насосных напорных станциях, в открытых природных и искусственных каналах и реках. Применяются как для коммерческого, так и для технологического учета.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector