Термоэлектрический генератор

Эффективность ТЭГ

Оценивается коэффициентом полезного действия. Мощность термоэлектрогенератора зависит от двух критических факторов:

  1. Объема теплового потока, который может успешно перемещаться через модуль (тепловой поток).
  2. Дельты температур (DT) – разница температур между горячей и холодной стороной генератора. Чем больше дельта, тем эффективнее он работает, поэтому конструктивно должны быть обеспечены условия, как для максимальной подачи холода, так и максимального отвода тепла от стен генератора.

Термин «эффективность термоэлектрических генераторов» аналогичен термину, применяемому в отношении всех других типов тепловых двигателей. Пока он очень низкий и составляет не более 17 % эффективности Карно. КПД генератора ТЭГ ограничен эффективностью Карно и на практике достигает лишь несколько процентов (2-6 %) даже при высоких температурах. Это происходит из-за низкой теплопроводности в полупроводниковых материалах, что не способствует эффективной выработке электроэнергии. Таким образом, нужны материалы с низкой теплопроводностью, но в то же время с максимально высокой электропроводностью.

Полупроводники лучше справляются с этой задачей, чем металлы, но пока еще очень далеки от тех показателей, которые вывели бы термоэлектрический генератор на уровень промышленного производства (хотя бы с 15 % использованием высокотемпературного тепла). Дальнейшее повышение эффективности ТЭГ зависит от свойств термоэлектрических материалов (термоэлектрики), поиском которых сегодня занят весь научный потенциал планеты.

Разработки новых термоэлектриков относительно сложные и затратные, однако в случае успеха они вызовут технологическую революцию в системах генерации.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже

Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

После платины идут металлы с отрицательным значением термоэдс:

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Концепция теплового насоса

Базовая идея теплового насоса заключается в извлечении некоторой полезной энергии из полученной разницы температур. Выходная энергия может быть механической, электрической или другой. Одним из явных примеров, который часто встречается в той же бытовой практике, выступает паровой двигатель. В данном случае нагревается вода с целью получения пара. В свою очередь пар, обладая свойством расширения, создаёт давление.

Классическая схема теплового насоса, применяемого на практике: 1 – холодный цилиндр; 2 – радиатор; 3 – маховик; 4 – источник тепла; 5 – горячий цилиндр; 6 – пар (газ); 7 – контур прохождения пара (газа)

Полученное давление используется для выполнения какой-то работы. Например, для толкания поршня в цилиндре механического привода. Выполняя работу, пар охлаждается, сжимается, конденсируется. Поэтому, чтобы паровая машина работала, необходима внешняя температура ниже температуры пара. Фактически, работа всех тепловых насосов зависит от разницы температур.

Термоэлектрический эффект и перенос тепла в электронных системах

Термоэлектрические генераторы, принцип работы которых основан на комплексном использовании эффекта трех ученых (Зеебека, Томсона, Пельтье), получили свое развитие почти через 150 лет после открытий, намного опередивших свое время.

Термоэлектрический эффект заключается в следующем явлении. Для охлаждения или генерации электричества используется «модуль» состоящий из электрически связанных пар. Каждая пара состоит из полупроводникового материала р (S> 0) и n (S<0). Эти два материала соединены проводником, термоэлектрическая мощность которого считается равной нулю. Две ветви (p и n) и все остальные пары, составляющие модуль, соединены последовательно в электрической цепи и параллельно в термической. ТЭГ (термоэлектрический генератор) с такой компоновкой создает условия, чтобы оптимизировать тепловой поток, который проходит через модуль, преодолевая его электрическое сопротивление. Электрический ток воздействует таким образом, что носители заряда (электроны и дырки) движутся от холодного источника к горячему источнику (в термодинамическом смысле) в двух ветвях пары. При этом они способствуют переносу энтропии от холодного источника к горячему, к тепловому потоку, который будет противостоять теплопроводности.

Если выбранные материалы обладают хорошими термоэлектрическими свойствами, этот тепловой поток, создаваемый движением носителей заряда, будет больше теплопроводности. Поэтому система передаст тепло от холодного источника к горячему и будет действовать как холодильник. В случае генерации электричества тепловой поток вызывает смещение носителей заряда и появление электрического тока. Чем больше разность температуры, тем больше электричества можно получить.

Принцип работы

Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.

Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.

Эффект Пельтье

Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.

Но если на такой элемент или, как его еще называют, термоэлектрический охладитель оказать воздействие с противоположной стороны, то есть создать на его полупроводниках разность температур, то мы получим эффект Зеебека: элемент Пельтье превратится в источник постоянного тока.

Устройство и принцип работы

Принцип работы термоэлектрического генератора, или, как его еще называют, теплового насоса, основывается на преобразовании энергии тепла в электрическую энергию с использованием термических элементов полупроводников, которые связываются между собой параллельно или последовательно.

В ходе проведения исследований немецким ученым был создан совершенно новый эффект Пелтье, в котором указывается, что абсолютно разные материалы полупроводников при проведении спаивания дают возможность обнаружить отличие температур между их боковыми точками.

Но как же понять, как работает данная система? Все довольно-таки просто, такая концепция основана на определенном алгоритме: когда один из элементов охлаждают, а другой нагревают, то мы получаем энергию силы тока и напряжения. Главная особенность, которая выделяет из остальных именно этот метод, заключается в том, что тут могут использоваться всевозможные источники тепла, среди которых недавно отключенная плита, лампа, костер или даже чашка с только налитым чаем. Ну а охлаждающим элементом чаще всего является воздух или же обычная вода.

Как же устроены эти термические генераторы? Они состоят из специальных термических батареек, которые изготавливают из материалов проводников, и тепловых обменников разнородных температур спаев термобатарей.

Схема электрической цепи выглядит следующим образом: термоэлементы полупроводников, ветви прямоугольной формы n- и p-типа проводимой способности, соединенные пластины холодных и горячих сплавов, а также высокая нагрузка.

Среди положительных сторон термоэлектрического модуля отмечают возможность использовать абсолютно во всех условиях, в том числе и в походах, да и к тому же легкость транспортировки. Более того, в них отсутствуют подвижные детали, которые имеют свойство быстро изнашиваться.

А к недостаткам относят далеко не низкую стоимость, низкий коэффициент полезного действия (приблизительно 2–3%), а также важность еще одного источника, который обеспечит рациональный перепад температур

Следует отметить, что ученые активно работают над перспективами усовершенствования и устранения всех погрешностей в получении энергии таким способом. Продолжаются эксперименты и исследования по разработке наиболее эффективных термических батареек, которые помогут повысить значение коэффициента полезного действия.

Однако довольно сложно определить оптимальность этих вариантов, так как они базируются исключительно на практических показателях, не имея при этом теоретического обоснования.

Существует теория, что на современном этапе физиками будет использоваться технологически новый метод замены сплавов на более эффективные, в отдельности с внедрением нанотехнологий. Более того, возможен вариант использования нетрадиционных исходников. Так, в университете Калифорнии был проведен эксперимент, где термические батарейки заменили синтезированной искусственной молекулой, которая выступала как связующий материал золотых микроскопических полупроводников. Согласно проведенным опытам стало ясно, что результативность нынешних исследований покажет лишь время.

Шаг 4: Воспользуемся печкой

Чтобы начать пользоваться самоделкой подключим красный провод к пружинному зажиму входного напряжения (отмеченного VIN), а чёрный провод в первый терминал (GND). Вставьте положительный провод аккумулятора в терминал напряжение (VOUT), а отрицательный провод в другую клемму заземления

Очень важно отметить полярность при подключении проводов. Поместите элемент Пельтье и радиатор над источником тепла крышкой вниз

Чтобы убедиться, что устройство работает правильно, перед зарядкой проверьте напряжение аккумуляторной батареи. Через некоторое время снова повторите измерения.

В качестве источника тепла используем печку, которая сделана своими руками. Она напоминает контейнер с вырезанным отверстием для подачи воздуха.

После испытаний были получены различные показания.

  • Источник тепла: печка с прямым пламенем.
  • Нагрузка: 1.2 вольт «D-образной» аккумуляторной батареи.
  • Температура воздуха (это влияет на перепад температур): — 10 градусов Цельсия.
  • Производительность: 2,2-3,2 В;
  • Сила тока: 350-400 мА;
  • Вт: 0.77-1.28 Вт.

Использование[править | править код]

Пепел

Тип

Неиспользуемое

Редкость

Обычный

Возобновляемый
Складываемый

Да (64)

Текстовыйидентификатор

ic2:misc_resource


Интерфейс твердотопливного теплогенератора.

Интерфейс твердотопливного генератора состоит из двух ячеек: левой и правой. В левую помещается топливо; над этой ячейкой размещён индикатор сгорания топлива. Справа от ячейки топлива расположена ячейка для пепла, который имеет 50 %-ный шанс образования при полном сгорании топлива. Пепел не имеет применений; рекомендуется его утилизировать. Под ячейками расположена строка с указанием текущего выделения тепла в единицах тепловой энергии (еТЭ).

Теплогенератор производит тепло со скоростью 20 еТЭ/т (400 еТЭ/с). В качестве топлива используются те же предметы, что и для генератора и для самой обычной печи. Количество генерируемого тепла равно пятикратной длительности горения в обычной печи единицы топлива, измеряемой в тактах (1/20 секунды). Так, например, уголь сгорает в обычной печи за 80 секунд, или 1600 тактов; следовательно, в теплогенераторе он произведёт 8000 еТЭ. Количество единиц тепловой энергии, производимой одной единицей топлива, всегда в 2 раза больше, чем количество единиц электрической энергии, произведённой той же единицей топлива в обычном генераторе.

Скорость сгорания топлива в теплогенераторе выше, чем в обычной печи, в четыре раза. Так, если тот же уголь сгорает в печи за 80 секунд, то в теплогенераторе — за 20 секунд.

Тепловая энергия выделяется в одном направлении, помеченном оранжевым квадратом (при работе он становится красным). Механизм, принимающий тепло, должен быть расположен со стороны этого квадрата; если его текстура также имеет оранжевый квадрат (например, в случае ферментера или доменной печи), он в свою очередь должен быть направлен в теплогенератор. Изменить направление выделения тепловой энергии можно с помощью гаечного ключа, для этого его необходимо использовать (обычно нажатием ПКМ) на той стороне блока, в которую предполагается выделять тепло.

В отличие от обычного электрического генератора, твердотопливный теплогенератор не используется в рецептах крафта для создания других видов генераторов тепла.

Термоэлектрические материалы

Термоэлектрики состоят из специальных сплавов или полупроводниковых соединений. В последнее время для термоэлектрических свойств применяются электропроводящие полимеры.

Требования к термоэлектрикам:

  • высокая эффективность, которая обусловлена низкой теплопроводностью и высокой электропроводностью, высоким коэффициентом Зеебека;
  • устойчивость к высоким температурам и термомеханическим воздействиям;
  • доступность и безопасность окружающей среды;
  • устойчивость к вибрациям и резким перепадам температур;
  • долгосрочная стабильность и дешевизна;
  • автоматизация процесса изготовления.

В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД ТЭГ. Термоэлектрический полупроводниковый материал представляет собой сплав теллурида и висмута. Он был специальным образом изготовлен, чтобы обеспечить отдельные блоки или элементы с различными характеристиками «N» и «P».

Термоэлектрические материалы чаще всего изготавливаются путем направленной кристаллизации из расплавленной или прессованной порошковой металлургии. Каждый способ изготовления имеет свое особое преимущество, но наиболее распространены материалы с направленным ростом. В дополнение к теллуриту висмута (Bi 2 Te 3) существуют другие термоэлектрические материалы, в том числе сплавы свинца и теллурита (PbTe), кремния и германия (SiGe), висмута и сурьмы (Bi-Sb), которые могут использоваться в конкретных случаях. Пока термопары висмута и теллурида лучше всего подходят для большинства ТЭГ.

Конструкция турбогенератора

Сюда входит два самых главных компонента – статор и ротор. Каждый из них обладает наличием множества элементов и систем. Ротор представляет собой вращающееся устройство турбогенератора. На него оказывают воздействие электромагнитные, механические и термические нагрузки. Статор же установлен стационарно. Но на него также влияют различные динамические нагрузки (высоковольтные, крутящие, вибрационные и др.).

Сердечник самого турбогенератора собирают из высоколегированной листовой горячекатаной стали. Если же его мощность превышает 100 МВт, то используется холоднокатаная сталь. Её листы расположены таким образом, чтобы направление, в котором движется магнитный поток в спинке самого сердечника, совпадало с направлением прокатки стали. Из этих листов набираются специальные пакеты, из которых уже формируются элементы сердечника.

Все имеющиеся вентиляционные каналы между этими пакетами изготавливаются при помощи распорок из стали немагнитного типа.

Обмотки статора делают двухслойными и стойкими к коррозии. В каждый имеющийся паз вставляются два стержня, которые относятся к двум различным секциям. В самих обмотках применяется непрерывная изоляция.

Статор турбогенератора включает в себя сам несущий корпус, в который устанавливается сердечник, и рёбра, жёстко связанные с опорными рамами. Между этими двумя элементами устанавливаются упругие детали. Изготавливаются они в виде прямоугольных эластичных призм. Между опорными площадками присутствуют сквозные овальные отверстия.

Паровая турбина турбогенератора

Это один из видов тепловых двигателей ротативного типа, который применяет энергию водяного пара. В ней происходит двукратное преобразование тепловой энергии пара в механическую работу.

По сравнению с поршневой машиной, паровая турбина является на много удобней в использовании, экономичной и компактной.

При истечении самого пара сквозь сопла, его потенциальная энергия трансформируется в кинетическую, передаваемую непосредственно на сами лопатки.

Комплект рабочих лопаток и неподвижных насадок называют ступенью турбины, которая может быть реактивной и активной.

Принцип действия данного устройства заключается в следующем. Через паропровод перегретый пар от котла подводится непосредственно к самой паровой турбине турбогенератора. Именно тут большая доля его тепловой энергии преобразуется в механическую работу. Затем этот отработанный с довольно сильно низким уровнем температуры и давления направляется в конденсатор. Тут присутствует система трубок, по которым постоянно прокачивается охлажденная вода.

После соприкосновения с холодной поверхностью пар конденсируется, превращаясь в воду. Этот образовавшийся конденсат откачивается насосом и подаётся в сборный бак через специально предназначенный подогреватель и затем в паровой котёл.

Отсюда можно сделать вывод, что в паровой турбине вода, пар и конденсат образуют замкнутый цикл.

Потеря пара и воды совсем незначительная, но она компенсируется при помощи добавления в саму систему сырой воды, проходящую заранее через очиститель воды. Ту т она подвергается специальной химической обработке, чтобы удалить все нежелательные примеси.

Математические модели и методы, используемые в задачах управления ТЭС

Как известно, технологический процесс на ТС заключается в поэтапном преобразовании различных видов энергии. Технологический процесс имеет особенность: конечный продукт — электроэнергия — не подлежит складированию. Косвенным показателем соответствия между паропроизводительностью котла мощностью турбины служит давление перегретого пара.

Современные ТЭС делятся на два типа:

  1. С поперечными связями. Основной агрегат по пару и воде связаны между собой
  2. С блочной компоновкой. При таком типе основное оборудование описывается отдельным технологическим процессом в пределах каждого энергоблока.

Для описания технологических процессов и формирования критериев управления составляются математические модели. Их изображают в форме уравнений.

В качестве объекта управления, характеризующего технологический процесс на ТЭС в целом, обычно выбирают типичный энергоблок. Технологический процесс, протекающий в таком блоке, можно представить в виде двух последовательных процессов: в паровом котле и турбогенераторе.

Автономные термоэлектрические генераторы

Именно простота и надежность обусловили использование ТЭГ в отдаленных и труднодоступных регионах для автономного энергоснабжения. К примеру, они применяются для питания навигационных маяков и метеорологических станций. Зачастую это разновидность газовых генераторов — ГТЭГ, где для нагревания используется природный газ.

Отдельно стоит упомянуть радиоизотопные ТЭГ, в которых источником тепла является естественный распад изотопов. Автоматическая межпланетная станция Кассини, запущенная к Сатурну в 1997 году была оборудована таким источником.

Для нагрева в РИТЭГ было использовано 32,8 килограмма изотопа плутония-238.

КПД турбогенератора

Величина данного параметра определяется самим заводом-изготовителем, а именно конструкцией и числом применённых активных материалов. Но стоит помнить, что только лишь обслуживающий персонал при нормальной работе турбогенератора способен увеличить коэффициент полезного действия путём минимизирования определённых потерь.

КПД данного агрегата равен отношению выдаваемой полезной мощности к той мощности, которая подводится к турбогенератору от турбины. Этот показатель зависит от нагрузки, которую несёт само устройство.

Для многих турбогенераторов максимальное значение данного коэффициента находится непосредственно в самой нагрузке, составляющей порядка 80-90% от номинальной. Это соответствует вполне нормальной работы турбины в экономичном режиме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector