Как рассчитать тепловую мощность отопления
Содержание:
- Как можно использовать тепловентилятор
- Общие данные, необходимые для вычислений
- 1 Организация серверной комнаты
- Пример расчета мощности для обобщенного случая
- 4.1. Шкала теплопроизводительности водогрейных котлов
- Определяем число секций алюминиевой батареи
- Расчет размера стального радиатора
- Накопительные водонагреватели (бойлеры)
- Проточные водонагреватели
Как можно использовать тепловентилятор
В каких же случаях лучше всего приобрести тепловентилятор? Главным его назначением является обогрев воздушных потоков, поэтому такой прибор применим во многих сферах. Вот некоторые из возможных вариантов использования теплового вентилятора:
-
Основной источник тепло подачи в помещение, где нет центрального отопления. Поскольку современный тепловентилятор – это надежный, удобный и безопасный электрический прибор с доступной стоимостью, то его часто используют в тех комнатах, где система отопления отсутствует. Отсутствующие батареи с лихвой компенсирует пара таких агрегатов, которые могут поддержать комфортную температуру даже в помещении с большой площадью.
- Дополнительное нагревательное оборудование в помощь далекой от совершенства системы отопления. Из-за многолетней эксплуатации центральной отопительной системы без каких-либо усовершенствований или же капитальных ремонтов она уже не всегда может справиться с поддержанием нормального температурного режима в помещении. В этом случае вам не обойтись без тепловентилятора. Он нивелирует перепады температуры в моменты похолодания и при смене времен года.
- Обогрев строительных площадок и работников. Проводить какие-нибудь работы в холоде просто невозможно, поэтому поддержать определенный режим на стройке можно посредством использования тепловентилятора. При этом будет возможным выполнение работы, а также комфортное пребывание людей на своем рабочем месте.
- Применение тепловентиляторов для быстрого нагрева воздуха. Небольшие размеры устройства и достаточная мощь позволяют мгновенно обогреть небольшие помещения, такие как дачный домик, гараж, бытовая комната, домик на колесах и другие.
- Использование в качестве обычного вентилятора. В зимний период нас донимает холод, а летом – невыносимая жара. Чтобы избавиться от знойного тепла, можно использовать тепловентилятор, его применяют и для охлаждения воздушных потоков. Это даст возможность сэкономить, не покупая еще один аппарат, как говорится – два в одном.
-
В помощь торговле. Многие торговые ларьки и павильоны не приспособлены для использования каких-либо других обогревающих приборов, кроме как тепловентилятор. Небольшие габариты и замечательная производительная способность поможет человеку выполнять свою работу, забыв о холоде.
- Нагревание комнат, удаленных от тепловых магистралей. В некоторых случаях нецелесообразным является прокладывание системы отопления в некоторые отдаленные помещения. Именно поэтому выходом из ситуации станет покупка тепловентилятора.
- Вентилирование и отопление закрытого помещения. В работе тепловентилятора используется принцип принудительной конвекции, поэтому он с легкостью не только поддержит необходимый температурный режим в небольших комнатках (кладовки, балконы, лоджии), но и поможет побороть сырость и грибковые образования.
Вот некоторые возможности такого полезного оборудования. Но это далеко не все его достоинства. Помимо функции обогревания комнат и помещений существует несколько неординарных способов использования тепловентиляторов.
Общие данные, необходимые для вычислений
Чем мощнее электрообогреватель, тем быстрее он подогревает заданное количество воды. Поэтому приборы по этому параметру подбирается в соответствии с задачами, необходимым объёмом и допустимым временем ожидания. Так, например, нагрев до 60°С 15 литров с нагревателем в 1,5 кВт займёт около полутора часов. Однако для больших объёмов (например, для наполнения 100-литровой ванны) при разумном времени ожидания (до 3 часов) для доведения жидкости до комфортной температуры понадобится устройство на 3 кВт мощнее.
Для полноценного вычисления расчётной мощности необходимо учесть ряд параметров:
-
Рабочий ресурс бытовой электросети.
Проблема «выбивания пробок» особенно актуально стоит в домах вторичного жилфонда. Некоторые жильцы, столкнувшись с ней (например, при установке электрических радиаторов), решали вопрос добавлением отдельного кабеля, усилением проводки. Однако более универсальный рецепт – покупка водонагревателя со средним или низким энергопотреблением (чаще это приборы накопительного типа). Разница между количеством киловатт бытовой электросети и совокупной мощностью всех домашних электроприборов даст значение оптимальной мощности водонагревателя, к которому нужно стремиться. -
Соотношение мощности ТЭНа (нагревательного элемента) и объёма бака.
Параметр, более важный для устройств накопительного типа, в которых вода расходуется постепенно, и критичной становится скорость её остывания. Чтобы 1-киловаттный водонагреватель не покупали со 100-литровыми баками, производители приводят ориентировочную таблицу, где 1-киловаттный прибор предназначен на 15 литров, 1,5 кВт – на 50, 2 кВт – на 50-100, а 5 кВт – на 200-литровый бак. -
Скорость водорасхода в минуту.
Параметр имеет большее значение для проточных водонагревателей. В обиходе мощностные показатели такого нагревательного устройства (с учётом максимальной ресурсозатратности) рассчитываютсяпутём умножения на два количества литров ворорасхода в минуту. То есть, если на проточное мытьё посуды в среднем тратится 4 л/мин., то ТЭН должен быть 8 кВт. Если при приёме душа расходуется 8 л/мин., то необходим 16-киловаттныйТЭН. Вычисления усложняет то, что в квартире используются сразу 2 (а иногда и 3) точки водозабора. В этом случае, рекомендуется в вычислениях получившуюся величину умножать в полтора раза.
1 Организация серверной комнаты
Серверные помещения оборудуют в зданиях, где функционирует большое количество техники (например, в офисных центрах). В них устанавливают такие приборы, как элементы бесперебойного питания, распределительные пункты, кроссы, патч-панели, коммуникационные стойки и многое другое. Исходя из количества необходимого оборудования рассчитываются размеры серверной комнаты. Минимально допустимой считается площадь 14 кв. м. В некоторых случаях может использоваться несколько таких комнат.
Требования к оборудованию специального помещения перечислены в стандарте TIA 569. Согласно этому документу, высота потолка в серверной должна достигать 2,5 м. Такая величина обусловлена тем, что большинство стоек для крепления аппаратов имеют высоту 2 м. Для обеспечения эффективного отвода тепла расстояние от их верхней точки до потолка должно быть минимум 0,5 м.
Для обустройства серверной следует выбирать комнаты без окон. Иначе через них в летнее время будет попадать большое количество солнечного тепла, негативно влияющего на работу современной техники.
Множество различных установок, собранных в одном месте, имеют внушительный вес. Поэтому для обеспечения безопасности пол должен выдерживать большую нагрузку (минимум 1200 кг на 1 кв. м.). Чтобы оборудование не вышло из строя из-за действия влаги, потолок требуется покрыть слоем гидроизоляционного материала. Температурный режим следует постоянно поддерживать в диапазоне 18−24 градуса, влажность — на уровне 30−50%
В комнате обязательно наличие телекоммуникационной шины, выполняющей роль основного заземлителя. К ней присоединяют заземляющие проводники металлических кабелей, приборов и прочих конструкций. Освещение запитывают от разных распределительных электрощитов, световые приборы размещают на потолке, выключатели для них монтируют на высоте 1,5 м от пола.
Обязательным требованием к серверной является постоянное поддержание чистоты и отсутствие пожароопасных предметов. Доступ в неё должен быть строго ограничен, двери — закрыты на замок, ключи от которого может иметь собственник здания и лицо, ответственное за обслуживание помещения.
Пример расчета мощности для обобщенного случая
Допустим, имеется та же комната, но внутри 17ºС, а поверхность радиатора, к примеру, 55 ºС. Снаружи мороз -10 ºС, а добиваемся номинального комнатного значения (20 ºС), причем температура радиатора центрального отопления в худшем случае 50 ºC. Найдем максимальную мощность обогревателя, вытянувшую наихудший описанный случай при температуре за окном -30 ºС. В первую очередь, находим мощность батареи при температуре поверхности 55 ºС и комнатной 17 ºС. Уже показали, как действовать в данном случае, теперь покажем на практике. Берем масляный обогреватель на 1,5 кВт, ждем, пока комната выйдет на режим, и замеряем разницу температур. Пусть для простоты получились те же 3 ºC. По графику находим нужную пропорцию:
(1,5 + (55 – 20)/(55 – 17)N) – N = 3 ºC.
От рабочей точки до пересечения графика с горизонтальной осью расстояние в градусах составляет 27. В итоге получается:
N = 9 (1,5 – 0,078N), откуда находим ватты. Получилось 7,9 кВт. Это мощность радиатора центрального отопления при разнице температур 38ºС (между поверхностью батареи и комнатой). В наихудшем случае эта дифференциация будет меньше и составит 30. Полученная мощность уменьшается пропорционально и составит 6,23 кВт. Строим график для данного случая аналогично тому, что на картинке. Вспоминаем значение теплопотери при 27ºС с нулевой точкой. Это 7,9 кВт. Приводим задачу к решенной выше, для чего находим теплопотери при -10 ºC снаружи и комнатной температуре 20 ºС. Получается 30 ºС разницы. Следовательно, делим 7,9 на 0,9 и получаем 8,77 кВт. Для удержания комнаты на заданном уровне в этих условиях к батареям добавим разницу (8,77 — 6,23) = 2,54 кВт.
При температуре за окном -30ºС условия ужесточатся. Решаем задачу как показано выше, для поиска результата. Относительно уже имеющихся теплопотерь 8,77 кВт добавится дополнительно 2/3 указанного числа, составляя 5,78 кВт. Суммарная мощность обогревателей превысит энергию радиаторов и составит 5,78 + 2,54 кВт = 8,32 кВт. Понятно, что за счет электричества данный результат маловероятен, следовательно, требуется инфракрасный камин на голубом топливе либо подобное устройство.
Теперь аналогично читатели рассчитают мощность инфракрасного обогревателя любого типа. Единственно, рассказ вели так, чтобы прогреть помещение, но, если требуется отдать тепло исключительно конкретному сектору, делите площадь на метраж пола и умножаете цифру в ваттах на коэффициент меньше единицы. Получится более скромное число. Говорят, что инфракрасные обогреватели помогают экономить. Рассчитать мощность газового обогревателя сложнее, так как греет и за счет конвекции. В данном случае необходимо правильно расположить оборудование для получения должного эффекта. Для ориентировки пользуемся алгоритмом, приведенным выше, как отправной точкой для дальнейших изысканий.
Расчеты допускают погрешность, но оценить требующуюся для квартиры мощность реально
Важно дождаться выхода температуры на режим, по возможности точнее провести измерения
4.1. Шкала теплопроизводительности водогрейных котлов
Назначением водогрейных котлов является получение горячей воды заданных параметров для теплоснабжения систем отопления бытовых и технологических потребителей. Промышленность выпускает широкий ассортимент унифицированных по конструкции водогрейных котлов. Характеристиками их работы являются теплопроизводительность (мощность), температура и давление воды, важен также род металла, из которого изготовляют водогрейные котлы. Чугунные котлы выпускаются на теплопроизводительность1 до 1,5 Гкал/ч, давление 0,7 МПа и температуру горячей воды до 115 °C. Стальные котлы изготовляются в соответствии с шкалой теплопроизводительности на 4; 6,5; 10; 20, 30; 50; 100; 180 Гкал/ч (4,7; 7,5; 11,7; 23,4; 35; 58,5; 117 и 21.0 МВт).
Водогрейные котлы теплопроизводительностью до 30 Гкал/ч обычно обеспечивают работу только в основном режиме с подогревом воды до 150 °C при давлении воды на входе в котел 1,6 МПа. Для котлов теплопроизводительностью выше 30 Гкал/ч предусматривается возможность работы как в основном, так и в пиковых режимах с подогревом воды до 200 °C при максимальном давлении ее на входе в котел 2,5 МПа.
Определяем число секций алюминиевой батареи
Пересчитать параметры отопительного прибора под конкретные условия непросто. Формула тепловой мощности и алгоритм вычислений, используемый инженерами–проектировщиками, слишком сложен для обычных домовладельцев, несведущих в теплотехнике.
Предлагаем выполнить расчет количества секций радиаторов отопления более доступным методом, дающим минимальную погрешность:
- Соберите исходные данные, перечисленные в первом разделе настоящей публикации, — узнайте необходимое для обогрева количество теплоты, температуру воздуха и теплоносителя.
- Рассчитайте реальный температурный напор DT, пользуясь приведенной выше формулой.
- При выборе определенного типа батарей откройте технический паспорт и отыщите показатель теплоотдачи 1 секции при DT = 70 градусов.
- Ниже представлена таблица готовых коэффициентов пересчета отопительной мощности радиаторных секций. Найдите показатель, соответствующий реальному DT, и умножьте его на величину паспортной теплоотдачи – получите мощность 1 ребра при ваших эксплуатационных условиях.
Зная настоящий тепловой поток, нетрудно выяснить число ребер батареи, требуемое для обогрева комнаты. Разделите нужное количество теплоты на отдачу 1 секции. Для ясности приведем пример расчета:
- Возьмем угловую комнату с двумя светопрозрачными конструкциями (окнами) площадью 15.75 м², высота потолков – 280 см (показана на фрагменте чертежа). Удельные затраты теплоты на обогрев – 130 Вт/м², общая потребность составит 130 х 15.75 = 2048 Вт.
- Величину теплового напора мы выяснили в предыдущем разделе, DT = 43 °C.
- Подбираем низенькие алюминиевые радиаторы GLOBAL VOX 350 (межосевое расстояние – 350 мм). Согласно документации изделия, теплоотдача 1 ребра составляет 145 Вт (DT = 70 °C).
- Находим в таблице коэффициент, соответствующий DT = 43 °C, K = 0.53.
- Умножаем паспортную мощность на коэффициент и находим реальную отдачу 1 секции: 0.53 х 145 = 76.85 Вт.
- Рассчитываем количество алюминиевых ребер на помещение: 2048 / 76.85 ≈ 26.65, округляем в бо́льшую сторону и получаем 27 штук.
Остается распределить секции по комнате. Если размеры окон одинаковы, делим 28 пополам и размещаем под каждым проемом радиатор на 14 ребер. В противном случае число секций батареи подбирается пропорционально ширине окон (можно приблизительно). Аналогичным образом пересчитывается теплоотдача биметаллических и чугунных радиаторов.
Схема расстановки батарей — приборы лучше размещать под окнами либо возле холодной наружной стены
Многие известные фирмы, в том числе GLOBAL, прописывают в документации теплоотдачу своих приборов для разных температурных условий (DT = 60 °C, DT = 50 °C), пример показан в таблице. Если ваш реальный ΔT = 50 градусов, смело пользуйтесь указанными характеристиками безо всякого перерасчета.
Расчет размера стального радиатора
Конструкция панельных приборов отличается от секционных. Батареи делаются из штампованных стальных листов толщиной 1…1.2 мм, заранее обрезанных в нужный размер. Чтобы подобрать радиатор требуемой мощности, нужно выяснить теплоотдачу 1 метра длины сваренной из листов панели.
Предлагаем воспользоваться простейшей методикой, основанной на технических данных серьезного немецкого производителя панельных водяных радиаторов Kermi. В чем суть: штампованные батареи унифицированы, типы изделий отличаются между собой количеством греющих панелей и теплообменных оребрений. Классификация радиаторов выглядит так:
- тип 10 – однопанельный прибор без дополнительных ребер;
- тип 11 – 1 панель + 1 лист гофрированного металла;
- тип 12 – две панели плюс 1 лист оребрения;
- тип 20 – батарея на 2 греющих пластины, конвекционное оребрение не предусмотрено;
- тип 22 – двухпанельный радиатор с 2 листами, увеличивающими площадь теплообмена.
Эскизы стальных обогревателей различных типов — вид сверху
Итак, панельные штампованные приборы любого бренда отличаются только монтажными габаритами. Расчет радиаторов отопления сводится к выбору подходящего типа, затем по высоте и теплоотдаче вычисляется длина батареи для конкретного помещения. Алгоритм следующий:
- Определите исходные данные, перечисленные в начале статьи.
- Выберите тип и высоту отопительного прибора. Самый распространенные варианты – изделия высотой 30, 40 и 50 см, тип 22.
- Воспользуйтесь представленной таблицей, где указана теплоотдача q (Вт/1 м. п.) радиаторов Kermi разных типов и размеров в зависимости от условий эксплуатации. Начните с левого столбца – отыщите соответствующую температуру комнаты, потом – теплоносителя, дальше высоту и тип батареи. В ячейке на пересечении строки и столбца найдете мощность 1 метра радиатора.
- Количество энергии, нужной для обогрева, разделите на величину q – узнаете метраж радиатора заданной высоты.
- По каталогу подберите прибор водяного отопления соответствующей длины. При необходимости (например, батарея вышла чересчур длинной) разбейте этот размер на 2—3 прибора.
Пример расчета. Определим габариты стального радиатора для той же комнаты 15.75 м²: теплопотери — 2048 Вт, температура воздуха – 22 градуса, теплоносителя – 65 °C. Возьмем стандартные батареи высотой 500 мм, тип 22. По таблице находим q = 1461 Вт, выясняем общую длину панели 2048 / 1461 = 1.4 м. Из каталога любого производителя выбираем ближайший больший вариант – обогреватель длиной 1.5 м либо 2 прибора по 0.7 м.
Окончание первой таблицы — теплопередача 1 м длины радиаторов «Керми»
Watch this video on YouTube
Накопительные водонагреватели (бойлеры)
Без физико-математических формул бытовой расчёт описывается следующим образом: за 1 час 1 кВт нагревает 860 литров на 1 К. Для более точного определения времени нагревания, мощностных характеристик, объёма используется универсальная формула, из которой потом выводятся остальные результаты:
Эта формула состоит из нескольких и отражает целый ряд параметров, учитывая при этом фактор теплопотерь. (При малых мощностных характеристиках и большом объёме этот фактор становится более существенным, однако в бытовых нагревателях этим учётным значением чаще пренебрегают):
N full – мощностные характеристики нагревательного элемента,
Q c – теплопотери водонагревательной ёмкости.
- c= Q/m*(tк-tн)
- С – удельная теплоёмкость,
- Q – количество теплоты,
- m – масса в килограммах (либо объём в литрах),
- tк и tн (в °С) – конечная и начальная температуры.
- N=Q/t
- N – мощностные характеристики нагрева.
- t — время нагревания в секундах.
- N = N full — (1000/24)*Q c
Упрощенные формулы с постоянным коэффициентом:
- Расчёт мощности ТЭНа для нагрева воды нужной температуры:
W= 0,00117*V*(tк-tн)/T - Определение времени, необходимого для нагревания воды в водонагревателе:
T= 0,00117*V*(tк-tн)/W
Составляющие формул:
- W (в кВТ) – мощностная характеристика ТЭНов (нагревательного элемента),
- Т (в часах) – время нагрева воды,
- V (в литрах) – объем бака,
- tк и tн (в °С) – конечная и начальная температуры (конечная – обычно 60°C).
Часто объём приравнивают к массе (m). Тогда определение мощности ТЭНа будет производиться по формуле: W= 0,00117*m*(tк-tн)/T. Формулы считаются упрощёнными, ещё и потому что в них не учитывается:
- фактическая мощность электросети,
- температура окружающей среды,
- конструктивные особенности и потенциальные теплопотери бака,
- рекомендации некоторых производителей, относительно tн (порядка 5-8 °С летом и 15-18 °С – зимой).
При покупке устройства надо принимать во вниание, что относительно низкие мощностные характеристики накопительных водонагревателей по сравнению с проточными ещё не гарантируют финансовую экономию. Накопительные меньше «забирают», но из-за того, что работают дольше, больше и расходуют. Для финансовой экономии более надёжной стратегией будет общее снижение водопотребления за счёт установки различного вида экономителей (http://water-save.com/
) и строгий учёт водорасхода.
Проточные водонагреватели
В расчете количества тепла для нагрева проточной воды надо учитывать разницу в стандартах напряжения России (220 В) и Европы (230 В), так как значительная часть электроводонагревателей изготовляется западноевропейскими компаниями. Благодаря этой разнице номинальный показатель в 10 кВт в таком приборе при подключении к российской сети в 220В будет на 8,5% меньше – 9,15.
Максимальный гидропоток V (в литрах за минуту) с заданными мощностными характеристиками W (в киловаттах) рассчитывается по формуле: V= 14,3*(W/t2-t1), в которой t1 и t2– температуры на входе в нагреватель и в результате подогрева соответственно.
Ориентировочные мощностные характеристики электроводонагревателей применительно к бытовым потребностям (в киловаттах):
- 4−6 – только для мытья рук и посуды,
- 6−8 – для принятия душа,
- 10−15 – для мойки и душа,
- 15−20 – для полного водоснабжения квартиры или частного дома.
Выбор затрудняет то, что нагреватели выпускаются в двух вариантах подключения: к однофазной (220 В) и трёхфазной (380 В) сети. Однако нагреватели для однофазной сети, как правило, не выпускаются выше 10 киловатт.